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Lecture 3: Geotechnical considerations
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3.1 Synopsis

Discusses enhancements of the standard FE for
geotechnical analysis
Undrained analysis, modeling structural and interface

3.2 Introduction

Constitutive relationships in effective stresses
Interaction problems

Wider range of boundary conditions
Excavation and construction
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Figure 3.1: Examples of soil-structure interaction

ifrealistic analyses are to be performed. For example, many geotechnical problems
involve excavation and construction, see Figure 3.2. Many also involve changes
in pore water pressure. Special boundary conditions are often required to model
soil structure interaction.
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This chapter describes how the above conditions can be accommodated in finite
element analyses. Their application in specific geotechnical problems is discussed
in Volume 2 of this book.
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.- _constructed "+ excavated
a) Embankment construction b) Basement excavation

Figure 3.2: Examples of construction and excavation
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Effective stress principle: ﬁ?&@jﬂﬁ@

R P=3N +uA
A
IN'
X< O"="'A— B_ZN'_*_u
i A A

Normal stress: =0 +u

Shear stress: no change

Interpretation of effective stress.

Effective stresses control: both deformation and
shear resistance (or shear strength) since they
reflect soil particle interaction R L i
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3.3 Total stress analysis
(Ao} = [D){A &} (3.1

where {Ac}=[Ag,, Ad,, Ad,, At,, At,,, A7,]" and {Ae}=[A¢,, Ag,, Ae., Ay, Ay,
Ay, J" are the incremental total stress and strain vectors and [D] is the assumed
relationship between these vectors. For the present considerations, [D] is assumed
to be the isotropic linear elastic matrix, given in Section 1.5.5 of Chapter 1.

- Fully drained problems in which there is no change in pore fluid pressure, Ap;
= 0, This implies that changes in effective and total stress are the same, i.e.
{Ac¢’'}={Ac}, and that the [D] matrix contains the effective constitutive
behaviour. For example, for isotropic linear elastic behaviour [D] will be based
on a drained Young's modulus, £’, and drained Poisson's ratio, z’.

- Fully undrained behaviour in which the [D] matrix is expressed in terms of
total stress parameters. For isotropic linear elastic behaviour [D] is based on an
undrained Young's modulus, E, , and an undrained Poisson's ratio, u,, .

£,=0.499 <0.5 for undrained analysis — there is NO need to
separate effective stress and pore water pressure

10m
ek
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100m
a) Finite element mesh

ire 3.3: Effect of Poisson’s ratio
n the behaviour of a smooth
flexible strip footing
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b) Settlel_nent under the corner of strip footing vs. Poisson's ratio
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3.4 Pore pressure calculation

» The previous undrained analysis is done using total
stress Ao and total stress parameters E, and .

» The undrained analysis is preferred to be done using
effective stress and parameters E’ and z’ :
(a) Pore water pressure Ap; calculation is needed.
(b) Constitutive relationships are normally expressed in
terms of effective stresses Ac’

The principle of effective stress is:
(Ao} = {Aa'}+{Aaf} (.2)

(Acy)={Ap, Ap, Ap, 0 0 07 (3.3)
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{Aa'} = [D']{As} (3.4)
{ao,} = [D]{As) (3.5)
Substituting Equations (3.1), (3.4) and (3.5) into Equation (3.2) gives:
2] - [2]+[2)] 6
[Df] = Ke[:; 23] (3.7)

in which K, is a constant, 1, is a 3 x 3 matrix all elements of which are 1, and 0, is
a 3x3 null matrix. It is shown below how the equivalent bulk modulus of the pore
fluid, K, , is related to K. This follows from Naylor (1974).

In effective stress analysis — there is a need to separate

effective stress and pore water pressure . .ﬁ Y

(calculated separately —% 73 F11-57) af) W3R
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n=void ratio, V,=volume of voids, V.=volume of solids,
V=total volume. The relationship is:

N=Y0,V, =0V, V, 2V V2V (V) =V (L)
\ \Y

a VA A VA
AgVVl)id ZA_\/V= pf ] AVV =V—pf, Agvysolid :Ai\/sz pf ’ AVS zsipf
: vV, K, K, V, K, K,
AV, +AV, V, A A A A
g =t Pe Ve BB OB (2P
Vv V K, VK K, K.
n (1-n)

f §
Substituting Equation (3.7) into (3.5) gives three identical equations:
Ap; = K, (Mg, +Ag, + Ag,) = K Aé,
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NV, =V, V, =V VSV ) =V )

1_
As,=—Ap, + (=) Ap, (3.8)

K; K

5
Substituting Equation (3.7) into (3.5) gives three identical equations:
Ap; = K,(Ag, +As, + Ag,) = K,A¢,

Ae, = —L (39

K== (-n) (3.10)
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In undrained analysis, K, must be set. For saturated case,
results are not sensitive to as long as it is large, but not
too large. K=K

(=100 to 1000, K =bulk modulus of soil skeleton)
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 Relation between g, and x :

pw=—A | where A=(1+""')[ 2 +ﬁ] (3.13)

T Q+24) -2 | A+ ) 3

Table 3.1 indicates how u, varies with f for 4’= 0.1 and x’'=0.3.

Table 3.1: Equivalent values of u,

Ha
d u=0.1 u'=0.3
10 0.4520 0.4793
100 0.4946 0.4977
1000 0.4994 0.4998
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3.5 Finite elements to model structural components

Many geotechnical problems involves soil-structural
interaction: retaining walls, props, anchors, etc.

How to model a structure?

(a) Using 2-D/3-D continuum elements — structure size
Is small which needs large number of elements or
unacceptable ratio

(b) Using structural elements — beam, membrane, cable
elements for averaged quantity such as bending, axial
force, etc.
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Classic (pure bending) beam element — E, I, A(A is
area)

Mindlin/Timoshenko (bending and shearing) beam
element-E, G (k), &, I, A

Membrane (no bending and tension only) element — E,
u A
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3.6 Finite elements to model interface

3.6.1 Introduction

» Soil-structural interaction — large relative movements,

even separation

» Three common interaction modeling methods:
(a) Using continuum elements — problem with
separation and large relative movement (large

deformation?)

(b) Linkage elements using discrete springs
(c) Using interface elements with zero thickness

NEEEE
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Figure 3.9: Soil-structure
interface using continuum
elements

Figure 3.10: Use of
continuum elements to
model interface

Figure 3.11: Use of springs
to model interface
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Figure 3.12: Use of special
interface elements




3.6.2 Basic theory
» Isoparametric interface
element

A&7 3.44
Ao _[ ] Ag (3.44) a) 6-noded element b) 4-noded element

Figure 3.13: Isoparametric interface
elements

For isotropic linear elastic behaviour the [D] matrix takes the form:

K, 0
[D]=[O K} | (3.45)

where K, and K,, are the elastic shear stiffness and normal stiffness respectively.
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The interface element strain is defined as the relative displacement of the top
and bottom of the interface element:

7y o= Ay o= -y (3.46)
£ = Ay, = yt—y® (3.47)
where: '
u, = vsina+ucosa
) (3.48)
v, = vcosa-usina

and u and v are the global displacements in the x; and y; directions respectively.
Hence: bot  toon < b

y = (v =v®)sinag + (@ —u'"") cos
bot _

(3.49)

u'P) sine

£ = (W' =v®)cosa - (u

10



3.6.3 Finite element
formulation

a) Global coordinates b) Natural ordinate
Figure 3.14: 6 noded interface

element
Figure 3.14 shows a six noded interface element. The strains are defined as:

bot top

7’ u] -u1
= 3.50
H {} 0

The transformation of local to global displacements is written in matrix form

as (Figure 3.14):
U, cosa sina||u '
: = . (3.51)
v, —sing - cose || v
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Substitution into Equation (3.50) gives:
7| | cosa sina 2w — P (3.52)
e | -sina cosa [|v* - vt )

The global displacements (u, v) at any point in the element are expressed in
terms of the nodal displacements;, using the isoparametric shape functions, N;:

top _
U = Nyu, + N, + Ngu,

(3.53)
u™® = Ny, + Nyu, + Nsug
d
an VP = Ny, + Ny, + Ngvg (3.54)
v = Ny, + N,v, + Nyvg
where the subscript refers to the node number.
The isoparametric shape functions, ¥, are defined as:
N, = N, = 2s(s-1)
N, = Ny = 2s(s+1) (3.55)

Ny = Ng = (1=5%)
where s is the natural ordinate that varies from -1 to +1 over the element length

N NANJING UNIVERSITY
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(Figure 3.14), Substitution of Equations (3.53) and (3.54) into (3.52) gives:

{Z} = [B](s} (3.56)

where ¢ is the vector of nodal displacements (degrees of freedom) defined as:
{5} = { U V) Uy Vo Uy Yy Uy YV, Us Vs Ug vé}T (3.57)
and '

[B]_{cosa sina}[Nl 0N, 0 -N, 0 -N, 0 N, 0 =N, o]

—sina cosa@ 0O N, 0 N, 0 -N, 0 -N, 0 N, 0 -N;
(3.58)
The element stiffness matrix, [K,], is given by (see Section 2.6):
Ly T
[K:]=i[B] [o] B] (3.59)

where / is the length of the element and the constitutive matrix [D] is given by
Equation (3.44) or (3.45). The integral is evaluated in the natural ordinate system,
see Figure 3.14, giving:

N NANJING UNIVERSITY

[e] = {[ 8] [] £ as (3.60)

where |J| is given by Equation (3.31).

The coordinates of the top and bottom of the interface are defined in terms of
the nodal coordinates, using the shape functions (Equation (3.55)). For small
displacement analysis, in which the calculations are based on the original
geometry, coordinates x and y are:

xP = x™ = Nx, + Nox, + Noxs G.61)
Y= = Ny + Nyy, + Ny
and
E.: Nix, + N,x, + Nlx
i 1% 2%3 5%s 3.62)
q .
d_;: = Ny, + Ny, + Nsys

where the prime denotes the derivative with respect to s. The trigonometric
functions, sina and cosa, are given by Equation (3.30).
| dr 3 % %

¢ .-."a NANJING UNIVERSITY
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3.6.4 Comments on zero thickness interface elements

 Suffer from numerical instabilities if they have widely
different stiffness from adjacent continuum/beam
elements

« How to determine K, and K, ?
* Interface

- true zero thickness case
- non-zero thickness case

IEZLT |
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Large direct shear tests on soil- geotextlle interface
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Large direct shear tests on soil-geomembrane interface

N

=T, ( N k[tk

Large direct shear tests on soil-geogrid interface
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600mm

Soil Sample

700mm

Soil nail pullout testing study

570m
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3.7 Boundary conditions

3.7.1 Introduction [Ks]){ad} . = {ARg}
Boundary condition (BCs) types:

(a) BCs affecting {AR} - Point loads, Boundary stresses, Body
forces, Construction, and Excavation

(b) BCs affecting {Ad}c - Prescribed displacements

(c) BCs affecting the whole structure of the system
equations - Local axes, Tied freedoms, Springs

NEEEE
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3.7.2 Local axes

» Local axes requires a transformation of the stiffness
matrix and the right hand side load vector

» Local axes simulate sliding in a certain direction — only
one degree of freedom (v,=0 in Fig 3.15))

Yo Global
degrees of
| g freedom Figure 3.15: Sliding boundary
condition

NEEEE
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If local axes are defined, it is necessary to transform the element stiffness
matrices and the load boundary conditions prior to assembling the global system
of equations. For 2D plane strain and axi-symmetric analyses the element stiffness
matrix [Kg] is transformed from global axes to local axes by:

T
[KE]Iacal = [Q] [KE]gIobal[Q] (363)
where [Q] is a rotation matrix of direction cosines defined by the expression:
{ad} .. =[l{ad},,, (3.64)

which relates the local displacements to the global displacements. For example, for
a 4 noded isoparametric element, the rotation matrix [Q] takes the form:

[cosa, —sina, 0 0 0 0 0 0 ]

sing, cosa, 0 0 0 0 0 0
0 0 cosa, —sina, 0 0 0 0
0 0 sina, cosa 0 0 0 0

[Q]z 0 0 0 i 0 i cosa, —sinay, 0 0 (3.65)

0 0 0 0 sing; cosa; O 0
0 0 0 0 0 0 cosa, -sing,

. 0 0 0 0 0 0 sina, cose,

where angles a,, a,, a;, a, define the orientation of the local axes with respect to
the global axes at each of the four nodes. In practice, the number of multiplications
performed in evaluating Equation (3.63) is greatly reduced by only processing the
non-zero sub-matrices of the matrix (3.65).

The transformation of the right hand side load vector can be performed in a
similar manner. Using the definition of {AR;} given in Section 2.6, the
transformed load vector becomes:

(aRz}, . =[o] (aRc} .. (3.66)

where [Q] is again of the form of Equation (3.65) (note: [@]" = [@]7). The
transformation Equation (3.66) is indicated at the element level, however, in
practice it is more convenient to take account of the local axes in the assembled
right hand side vector, {AR}.

NEEEE
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3.7.3 Prescribed displacements

» Certain prescribed displacements are needed to at least
to restrict any rigid body translation or rotation;
otherwise, the global stiffness matrix becomes singular
and the system equations can NOT be solved.

» How to apply prescribed displacements:

(a) Specifying natural structure boundaries —
footing/soil/rock bottom etc.

(b) Specifying sufficient number of displacements —
Example 1: left/right infinite domain by letting u=0
(see Figs. 2.20 and 2.21)

Example 2: see Fig.3.16
(c) For beam elements:

one point with u=v=4 (rotation)=0 )
EPE
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Example 1:
 Strip footing (12m wide) — 2-D plane strain
e Half FE mesh — 20m x 20m > 3(B/2), reducing BC effects

Line of symmetry .
o : Footing | AF=AF =0
ooting :
I | : B -
E=10000 KN/ [T
p=04 : By g

1
)

Figure 2.20: Footing problem

Au=Av=0

Figure 2.21: Finite element mesh
for strip footing problem

18



Example 2:

» Astress boundary problem with removal of rigid body
mode (no translational move and no rotation)

Figure 3.16: Removal of rigid body .
modes rEPE
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The global equilibrium Equations (2.30), can be partitioned in the form:

K“ K" Adu _ ARu
= i) oo

where Ad, are the unknown degrees of freedom and Ad, corresponds to the
prescribed displacements. The first matrix equation from Equation (3.67) gives:

[K.]{ad,} = {A—i} (3.68)

e (AR} = {AR,} -[K.,|{Ad,} (3.69)

Thus the unknown displacements {Ad, } can be calculated from a modified system
of global equilibrium Equations (3.68).

Having determined {Ad,} from Equation (3.68), the second matrix Equation
(3.67) gives:

(AR} =|K,,| (ad,} +|K,]{ad,} (3.70)

Hence, the Reaction forces corresponding to each prescribed displacement can also

be calculated.

19



3.7.4 Tired degrees of freedom

» This boundary condition allows equal displacement
components to be imposed at one or more nodes whilst
the magnitude of the components remain unknown

» Example: a smooth rigid strip footing

Footing
PI Avtied AF,=0 _ _ AF,=AF,=0
B* A
Figure 3.17: Boundary conditions
ﬁ> for a smooth strip footing subject to
A= AF. =0 a vertical load P

L4

i

NEEEE
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Nodal
displacements

l Vi
I :[ Uy
.
I I / Vi
26 27 28 Uy,
- O )

25

Figure 3.18: Frictionless contact
problem

Vig=Vas 5 Vog=Vps 5 Vo1 =Vy7 5 Vu =V (3.71) ¥

NCEY NANJING UNIVERSITY
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3.7.5 Springs

Spring is an alternative to membrane element which
takes axial force only.

Used to model strut, cable, anchor, soil nails or other
structural elements subjected axial forces only

The parameter is K,

First case: for an inclined spring (see Fig.3.21):

JEEEE
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xG

EL gAYV Ve R g

Figure 3.21: Spring between 2 nodes

cos’@ sinfcos@  —cos’d —sinfcosf||Ay | |AR,
| sinfcosd sin’@ —sinfcosd  —sin@ || AV | _ | AR, G.12)
' —cos*@ —sinfcosd cos’@ sinfcosd || Au, AR, ‘
—sinf@cosé —sin’@ sin@cosd sin’@ || Av, AR,

where @ is the inclination of the spring to the global x; axis, see Figure 3.21. The
spring stiffness, £,, multiplied by the trigonometric matrix above must be added to
the global stiffness matrix during the assemble process. It affects the terms relating %

to the displacement degrees of freedom of nodes 7 and ;.
W NANJING UNIVERSITY
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Second case: a horizontal spring for strut (see Fig.3.22):

B cos’d sinfcosd |[ Ay,
' Av,

sinfcosé sin’6

assembly process.

_[AR, \
) s

where, in general, 0 is the inclination of the
spring to the global x,; direction. In the above
example 0 =0°. Again, the spring stiffness, £,
multiplied by the trigonometric matrix must be
added to the global stiffness matrix during the

| Line of symmetry

2

XG

D ekl s e T —

Figure 3.22: Spring at a
single node

'\"’/“ NANJING UNIVERSITY

Third case: continuous e

spring support
(see Fig.3.23):

For a single element side,
contribution to the global

stiffness matrix takes the form: gggﬁg gg

| [ N]T[ KV][ N] dSrf Figure 3.23: Continuous
- Sif L spring along mesh
boundary
where:

[K]=4]

cos’@ sinfcosd
sin@cosé sin?@

NEEEE
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3.7.6 Boundary stresses

» Examples such as pressure loading (see Fig.3.24)

» Stress boundary conditions must be converted to
equivalent nodal forces

i 3
— T.__ Normal
o «\ Strcss
) el —1 G
'4—-—-.— ——— A A — — — = —
1 T Shear stress 2
Figure 3.24: Example of stress Y
boundary conditions
Equivalent nodal forces:
[ARg) = v{f[zv]T{AT} dsrf (3.75)

where [N] is given by Equation (2.8), {AT} is the incremental global surface
traction vector (i.e. boundary stresses) and ‘Srf" (i.e. Surface) is the element side
over which tractions are prescribed. The integral (3.75) can be evaluated
numerically for each element side over which the tractions act. The first stage of
this process is to transform the surface integral (3.75) into an one dimensional form
in the natural coordinate system:

(AR} = _}]t [N’]T{AT} 7] ds (3.76)

where ¢ is unity for plane strain problems and equals 277 for axi-symmetric
problems, [/V'] contains the interpolation functions on the element side, and |J' |
is the Jacobian determinant obtained from mapping the element side from the

NEEEE
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global element to the parent element. For example, for a 4 noded isoparametric
element, [V'] takes the form:

A_|N 0 N3 O
[N]_[O N o N;] (3.77)
where
N = 1(1-5)
Nj = 2(1+5) 3.78)

are interpolation functions for the element side. The Jacobian determinant for each
point on the element side is given by:

1
2 AYY
|,,,{(91) @)] 79
ds ds
where the coordinate derivatives are obtained by differentiating the simplified
isoparametric relations:

2
x=2Nix ; yziNi’yi (3.80)
i=1

and x;. v; are the global coordinates of the two nodes on the element side. ..c... .

of the integrand evaluated at a number of Gaussian integration points.

To determine the integration point value of the surface traction vector {AT},
the applied stress must be transformed according to the orientation of the surface
element at the integration point and the defined sign convention for stresses, One
such sign convention is that normal stresses (o) are positive if oriented outwards
from the boundary of the body, while shear stresses (1) are positive if oriented in
a tangentially anticlockwise sense with respect to the boundary of the body. Using
this convention gives:

_ _ Jjcos,
{aT;] ‘af{sine,} (3.81)
if normal stresses are prescribed, or
_ . |—sing,
{AT’} B T’{ cosB,} (382)

if shear stresses are prescribed, where 8, is the angle between the boundary normal
and the global x;; axis, and the subscript / denotes the integration point value. The
angle 6, is determined by inverting the expression:

OH A5 A
NANJING UNIVERSITY
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2, ON;

& _|Has”
an(6, +90) N (3.83)
i=1 GS ! at §;

which is obtained by differentiating Equation (3.80).

In all cases the equivalent nodal forces, which are calculated from Equation
(3.76), are initially referred to the global system of axes. If local axes are defined,
the nodal forces are transformed accordingly, as described in Section 3.7.2.

JEEEE
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3.7.7 Point loads

* True point loads

» Traction boundary (stress) conditions is converted to
discrete nodal point loads

» For plane strain and axi-symmetrical analysis, they are
line loads ! Point loading

axes
xp

A SNL

— 65—
p S
b—0—4

PEPE |

v NANJING UNIVERSITY

Figure 3.25: Orientation of point ij'
loading axes i
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o=30, T3y

o=20,
7=2% T=0n
o=0 7

L

L L
Yook Jarl  fel Zad Aol Fool el 0 3ol Jal Aol Aol ol
) C b) Li tre a) Constant stress b) Linear stress ¢) Parabolic stress
a) Constant stress inear stress

A) 2-noded element side B) 3-noded element side

Figure 3.26: Equivalent nodal forces for element side with
A} 2 nodes and B) 3 nodes
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3.7.8 Body forces

» Gravity loading or body forces are important forces as
they influence the deformation and failure of
geotechnical structures a lot !

» Body forces shall be converted to equivalent nodal

forces
Ya
LXG

Figure 3.27: Body force loading
axes for sediment layer on a slope 7 %

'\"’/ NANJING UNIVERSITY
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The body force’s equivalent nodal forces are:

The nodal forces equivalent to the body force are calculated element-wise,
using the body force contribution to the right hand side vector, see Section 2.6:

T
{ARE} = j[N] {AFG} dvol (3.84)
Vol
where [N] is given by Equation (2.8), {AFg} is the global body force vector and

Vol is the volume of the element. The body force vector {AF} is determined with
respect to the global axes by using:

AF;| . |cos
oz =) os)

ALY
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where Ay is the increment of bulk unit weight; = @ or 6+90° depending on
whether Ay refers to the x,; or y; component of body force, respectively; and 8 is
the angle between the x; and x; axes.

The integral (3.84) is evaluated numerically over each element, by using the
procedure described in Section 2.6.1 for the element stiffness matrix. First, the
body force integral is transformed to the natural coordinate system:

(AR} = j’lj'lt [N]T|J| ds dT{AF,) (3.86)

where ¢ equals unity for plane strain problems and =2nr for axi-symmetric
problems; and |J| is the determinant of the Jacobian, given by Equation (2.16),
arising from the mapping between the global and parent elements. The global force
vector {AF;} can be removed from the integral, since it is constant over the
element. The integral in Equation (3.86) is determined using a two dimensional
Gaussian integration procedure, as described in Section 2.6.1.

NEEEE

$ .-."a NANJING UNIVERSITY

27



3.7.9 Construction

* Many constructions involve placing of new earth
materials

» Examples: embankment construction, backfilling
behind a retaining wall, backfilling a trench, etc.

» How to use FE to simulate ?

Elements representing the material to be constructed must be present in the
original finite element mesh, but must be deactivated, either by prior
excavation, or at the outset of the analysis. On construction the elements are
reactivated.

Construction of material must be performed incrementally since, even for a
lingar_elastic material, superposition does not hold. When constructing an
embankment the layered construction procedure must be followed, with each
increment of the analysis simulating the construction of a layer of fill.
During construction, the elements representing the new material must have a
constitutive model which is consistent with its behaviour during construction.
Once constructed, the constitutive model should change to represent the
behaviour of the material once placed.

Y TV - w =

NANJING UNIVERSITY

o WLy

When an element is constructed: the addition of its weight to the finite element
mesh must be simulated by applying self weight body forces to the constructed
element.

When constructing material, the following procedure is recommended:

Divide the analysis into a set of increments and make sure that all elements to
be constructed are deactivated prior to the increment at which construction
starts. ;

For a particular increment the elements to be constructed are reactivated and
given a constitutive model appropriate to the material behaviour during placing,.
This often means that the material has a low stiffness.

Nodal forces due to the self weight body forces of the constructed material are
calculated in a similar fashion to that explained for body forces in Section
3.7.8, and added to the right hand side load vector.

VAL i

¢ .-."a NANJING UNIVERSITY

28



The global stiffness matrix and all other boundary conditions are assembled for
the increment. The equations are solved to obtain the incremental changes in
displacements, strains and stresses.

Before application of the next increment, the constitutive model for the
elements just constructed is changed to represent the behaviour of the fill
material once placed. Displacements of any nodes which are only connected to
the constructed elements (i.e. not connected to elements that were active at the
previous increment) are zeroed. Depending on the constitutive models used to
represent the constructed material, it may be necessary to establish state
parameters (e.g. hardening parameters for elasto-plastic models) and/or adjust
the stresses in the constructed elements. If the stresses are adjusted, then care
must be taken that equivalent changes are made to the accumulated right hand
side vector to ensure equilibrium is maintained.

Apply the next increment of analysis.
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Figure 3.28: Embankment
construction
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3.7.10 Excavation

» Excavation involve removing earth materials

» Examples: excavation for foundation construction,
tunnel excavation, metro cut-cover-tunnel, etc.

* How to use FE to simulate excavation ?
- Determine tractions T which are equal to the internal
stresses in the soil mass before excavation between A
and B
- Apply the equal and opposite —T at the boundary A-B
- The behavior of soil mass B is then simulated

EELT |
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Simulation of a stage of excavation .
therefore involves determination of the |
tractions, 7, at the new soil boundary,
determination of the stiffness of the soil
mass B, and application of tractions, -7, |
to that new soil boundary. Finite element
implementation of this process involves :
determination of the nodal forces which b) |
are equivalent to the tractions shown in *-orsrmrrmmerrr s
Figure 3.29c. These forces can be |,
calculated from the excavated elements |
adjacent to the excavation boundary | i
using: ¢) !

(R;) =,,?J:/[B]T{O'} dVol—VfU[[N}Tdeol

Figure 3.29: Simulation of
(3.87) excavation

where {g} is the stress vector in the

element, y is the bulk unit weight and Vol is the volume of the excavated element.
Only the forces appropriate to the nodes on the excavated surface are placed in
{Rg}. This calculation is repeated for all excavated elements adjacent to the '

excavation boundary. This procedure is based on Brown and Bo\g&er (1985). .
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where the volume integral is now over the volume of an element and the surface
integral is over that portion of the element boundary over which surface tractions
are specified. The principal unknowns are the incremental nodal displacements
over the whole mesh, {Ad},. Minimising the potential energy with respect to these
incremental nodal displacements gives:

SAE =5 (5AdY),[ ] [BI'[DI[B) dVol {Ad}, - [[NT' {AF} dVol -
i=1 Vol Vol (22 4)
JINT {AT} dSrf1, =0

Srf

which is equivalent to a set of equations of the form:

S[K:] ({aa},), -

where: [Kg] = [,[B]'[D)[B] dVol = Element stiffness matrix;
{AR:} = [, INI"{AF} dVol+ [ [N]"{AT} dSrf= Right hand side load
vector. '

> (AR} (2.25)

i=1

When simulating excavation in a geotechnical problem it is usual that structural
elements or supports are added as excavation proceeds. It is therefore necessary to
split the analysis into a sequence of increments. This is also necessary if nonlinear
constitutive models are used. The procedure followed in the analysis is therefore
as follows:

- Specify the elements to be excavated for a particular increment.

- Using Equation (3.87) determine the equivalent nodal forces to be applied to
the excavation boundary to simulate removal of the elements. Tag the elements
to be excavated as deactivated and remove them from the active mesh.

- Assembie the remaining boundary conditions and the global stiffness matrix
using the active mesh. Solve the finite element equations to give the
incremental changes in displacements, stresses and strains.

- Add the incremental changes of displacements, stresses and strains to the
accumulated values existing before the increment to give the updated
accumulated values.

- Perform the next increment of the analysis.
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3.7.11 Pore pressures

» When performing analysis in which total stresses are
expressed using effective stresses and pore water
pressure (see Section 3.4), the pore water pressure may
be specified

» This is possible to simulate deformation due to pore
water pressure changes

» Examples: settlement due to de-watering, de-watering in
excavation, de-watering in tunneling, etc.

» How to use FE to simulate de-watering caused
deformation ? Porewater pressure is converted to
equivalent nodal forces

 This approach can simulate the final deformation due to
de-watering, but is not fully coupled consolidation
analysis ! Biot’s theory — full coupling of soil skeleton

NANJING UNIVERSITY

deformation and pore water pressure dissip..ﬁ 4 ¥

In the finite element analysis it is necessary to specify changes in pore fluid
pressure in terms of equivalent nodal forces. It can be shown that for an element
with a specified change in pore fluid pressure, Ap,, the equivalent nodal forces are
given by:

{RE} =~ [B]T{Aq,} dvol (3.88)

Vol

where {Ag,} is given by Equation (3.3). Two scenarios often occur:

(a) Pore water
pressure changes
due to de-watering |~

SandI De-watered | Sand

Clay I Clay

Figure 3.30: Excavation de-watering|
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(b) Pore water

pressure increase Legend
i o A=09
due tq Iqadmg q | AZ037
and dissipation 828‘23
due to drainage 528'23
G=03 q
H=02¢g

Figure 3.31: Excess pore water
pressures under smooth flexible
strip footing
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3.8 Summary

1.

2.

Drained analysis in which pore water pressures are ignored can be performed
by using effective stress material properties.

Undrained analysis can be performed in terms of total stress using total stress
material properties. Care must be taken when Poisson’s ratio approaches 0.5.

. Analysis can also be performed in which the total stress tensor is split into

effective stresses and pore fluid pressures. This enables undrained analysis to
be carried out using effective stress material properties in which the change in
effective stresses and pore water pressures are calculated. It also allows drained
analyses to be carried out, in which changes in the pore water pressures can be
prescribed.

It is often difficult to model structural elements using continuum finite
elements. Alternative structural elements are available. Beam/shell elements
can be used when the structural member can sustain bending moments and
axial and shear forces. Alternatively, if the structural element can only sustain
axial forces, membrane elements may be used. A detailed description of both
elements has been given.

The interface between structural elements and soil can be modelled in a variety
of ways. A special interface element which has zero thickness has been
described in this chapter. The use of this element in practical boundary value
problems is discussed in Volume 2 of this book.
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6. There are three classes of boundary conditions that arise in finite element
analysis. The first class affects only the right hand side of the governing
equations. These conditions are loading conditions such as boundary stresses,
body forces, etc... The second class affects the left hand side of the governing
equations. These are kinematic conditions such as prescribed displacements.
The third class is more complex, since they affect the whole structure of the
system equations. These conditions include local axes, tied freedoms and
springs.

7. The following boundary conditions have been described in detail:

- Local axes;

- Prescribed displacements;
- Tied degrees of freedom;
- Springs;

- Boundary stresses;

- Point loads;

- Body forces;

- Construction;

- Excavation;

- Pore pressures.
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