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6.1 Synopsis

 Introducing the framework and assumption of elasto-
plastic material behavior

* Important concepts

6.2 Introduction

» Using the theory of plasticity to extend previous simple
models with limitations

» The concepts of elasto-plastic behavior and how it is
formulated for FE analysis

 Linear elastic plastic — yielding, hardening/softening,
elc
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6.3 Uniaxial behavior of a linear elastic perfect plastic

material SR it AR B A R
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6.4 Uniaxial behavior of a linear elastic strain (or work)
hardening plastic material
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6.5 Uniaxial behavior of a linear elastic strain (or work)

softening plastic material
LRPAME-BEE AR (DD BALAR
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6.6 Relevance to geotechnical engineering
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6.7 Extension to general stress and strain space

I SR F3 A0 AR A 6]

How to extend a constitutive relation from 1-D to

3-D stress state?

We need assumptions and a mathematical model !
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6.8 Basic concepts (of plasticity)

6.8.1 Coincidence of axes:

Plastic models - the principal directions of

accumulated stress and incremental plastic strain
are assumed to coincide (different from elastic

model) — see sections 6.8.2 and 6.8.3

Elastic models - the principal directions of

incremental stress and incremental strain coincide

or total stress and zotal strain coincide
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Elastic behavior - General Hook’s Law
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Using increments. If D, are constants, then no difference
(5.7) has 36 constants. But thermo-dynamic strain energy
considerations lead [D] symmetrical — only 21 constants
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6.8.2 A yield function (F)
JEARBRE: FHRAIWT R KR T

There are two types:

{k} is dependent on plastic strain € P a strain hardening/

2 1 AR AH 5% - N AR B /K AL

softening parameter (vector)

{k} is dependent on plastic work W?’_ awork hardening/ softening

parameter (vector) ¥E P ThAE O=-In Th A/ 8k 4k

= [{o} {aer)
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{k} — a strain hardening/softening parameter (vector), dependent

on plastic strain &7
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6.8.3 A plastic potential function (P)
VSR R E BN ER T W (FoER RN

N\ — a scalar multiplier; WERT
P — plastic potential function;

{m} —location of P surface (a vector), not in the final equation

Associated Flow Rule (Normality Condition):

FARERS A SRERI BN IE N

Non-associated Flow Rule:
#
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Principal directions of SN RN EE M AR M B T A — BURR

accumulated (total) stress and incremental plastic strain are
assumed to coincide

HTRXMRYE, TTUAFER—MBIFRPLE
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6.8.4 The hardening/softening rules
WAL/ RALHEN . FIRI e RES BN (T KR
If a material is perfectly plastic,
then no hardening/softening
(k=constant); /A will be undefined
indicating the fact of infinite plastic
strain at yielding

k #constant: hardening/softening —
finite plastic strain &7

Fig.6.8 shows how yield stress
varies with plastic strain for 1-D
case

3-D case — yield surface varies with
k — calibrated by 1-D test results
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k — a hardening/softening parameter
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- C. 1 Modified Cam-Clay model: hardening
l+e, In(10) is controlled by plastic volume strain
C 1 from isotropic consolidation test
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In general, having accepted coincidence of principal directions
of accumulated stress and incremental plastic strain (Z£ 4 5E),
three further pieces of information are required to formulate an
elasto-plastic model.

(a)Ayield function (JEJREE%) which signals when the material
becomes plastic, and

(b)a plastic potential function (ZEPEIKE) which determines
the direction of plastic straining, are compulsory ingredients.

(c)If the material hardens or softens, a hardening/softening rule

CRE/BRALAEND s required.
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6.9 Two dimensional behavior of a linear elastic perfectly
plastic material

Elastic below yield surface

* Plastic strain infinite flow on the yield surface (fixed in
position), however, the ratio/direction is fixed

* Plastic strain is finite if confined, infinite if unconfined — see
footing
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6.10 Two dimensional behavior of a linear elastic hardening
plastic material

* Plastic strain finite flow on the yield surface (expanding or
moving in position)

* Isotropic hardening — yield surface expanding

* Kinematic hardening — yield surface shifting — no change in size

FHEL B
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* Isotropic hardening — yield surface expanding
* Kinematic hardening — yield surface shifting — no change in size
* Unloading — elastic; re-loading to d — plastic strain again
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6.11 Two dimensional behavior of a linear elastic softening plastic
material

« Similar to strain hardening, except reduction of yield surface size
* Unloading — elastic; re-loading to ¢ — plastic strain again
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6.12 Comparison with real soil behavior

* Real soil — both strain hardening and softening

« See Chapters 7 and 8 Fi [F]— M B Sk H5 3R 58 AL BR B4k
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6.13 Formulation of the elastic-plastic constitutive
matrix

«—Elastic Hook’s Law
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T

The above equation is
called:

the consistency equation
(condition) — plastic
strain is ALWAYS on the
yield surface — dF=0
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(6.10) = (6.12)
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Combine (6.10) and (6.12):

(6.13) into (6.10):

NANJING UNIVERSITY

(6.13) into (6.10):

Compare (6.15) to (6.4) to give the elastic-plastic constitutive
matrix
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{

Another prove: (6.10) into (6.11):
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The above into (6.10):

/D) {aP({gi{m})} {GF({(;'(},’{“)} [D/ine)
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1. Perfect plasticity:

{k} — are constants, no
change of the yield
surface

A=0 in (6.15) or (6.16)

277,
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2. Strain hardening/
softening plasticity:

{k} — are linear
function of plastic
strains {&}

(6.14) can be rewritten as:

The ANin (6.18) is cancelled and A4 is determinant.
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3. Working hardening/
softening plasticity:

{k} — are linear
function of plastic
work WP

(6.14) can be rewritten as:

A= _L{OF({J},{/«})} olk} oW 1) 1)

A oc | ow ofer}
. p
Since: a{k} = constant, OL = known
oW’ ofe"}

The AN 'in (6.18) is cancelled and A4 is determinant.
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Symmetry of [D]® and associated flow rule:

Elastic part /D] is symmetric. For /D] to be symmetric, the
condition is:

If associated flow rule is used: P=F.
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2. The elasto-plastic framework can incorporate both linear and nonlinear elastic

6.14 Summary

. Elasto-plastic theory provides probably the best framework available in which
to formulate constitutive models that can realistically simulate real soil
behaviour. Three types of plastic behaviour are identified: perfect plasticity and
strain (or work) hardening and softening plasticity. These models assume
elastic behaviour prior to yield and can therefore utilise the benefits of both
elastic and plastic behaviour. 5 SR PR HE SR

behaviour. Consequently, all the models described in Chapter 5 can be
incorporated.
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3. Elasto-plastic models are based on the assumption that the principal directions

4. If the yield and plastic potential surfaces coincide, the model is said to be

A BELME IR

of accumulated stress and incremental plastic strain coincide. They require two
essential pieces and one optional piece of information for their definition, The
essential ingredients are a yield function, which separates purely elastic from
elasto-plastic behaviour, and a plastic potential (or flow rule) which prescribes
the direction of plastic straining. The optional ingredient is a set of
hardening/softening rules which describe how the state parameters (e.g.
strength) vary with plastic strain (or plastic work).

associated (or to satisfy the normality condition). This results in a symmetric
constitutive matrix and consequently asymmetric global finite element stiffness
matrix. If such a condition does not hold, both matrices are non-symmetric.
This results in the use of greater computer resources, both time and memory,
for finite element analyses.
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