

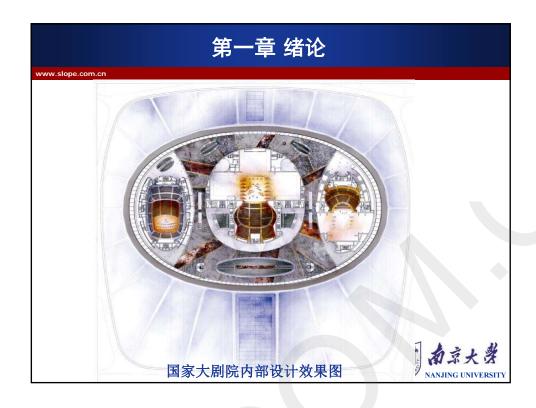
www.slope.com.cn

图片介绍

- ❖中国国家大剧院(Grand National Theatre of China)位于北京市中心天安门广场西,人民大会堂西侧,西长安街以南。国家大剧院由法国建筑师保罗·安德鲁主持设计,总投资额31亿人民币。
- ❖2001开工,2007竣工

巴黎戴高乐国际机场(29岁) 上海浦东机场 日本大阪关西机场 三亚机场 广州新体育馆

.



www.slope.com.cr

❖国家大剧院主体建筑由外部围护结构和内部歌剧院、音乐厅、剧场和公共大厅及配套用房组成。外部为钢结构壳体,呈半椭球形,由18000多块钛金属板拼接而成,面积超过30000平方米。中部为渐开式玻璃幕墙,由1200多块超白玻璃巧妙拼接而成。椭球壳体外环绕人工湖,各种通道和入口都设在水面下。

www.slope.com.cn

- ❖国家大剧院整个壳体钢结构重达6475吨,东西向长轴跨度212.2米,截至2011年,是世界上最大的穹顶(dome)
- ❖国家大剧院的建筑总高度为46.28米,其中地下最深处为-32.5米,相当于往地下挖了10层楼的深度,又在地上盖了15层楼
- ❖因为跨度太大,整体稳定性难以满足我国的网壳设计规范

www.slope.com.cn

国家大剧院设计中要考虑的三个问题:

- ❖1. 壳体结构在静、动载作用下的受力变形分析
- ❖2. 基坑开挖和止水设计
- ❖3. 地基基础的抗浮设计!!!

以上三个问题的解答均涉及到弹性力学的 相关知识,尤其是第一个问题

www.slope.com.cn

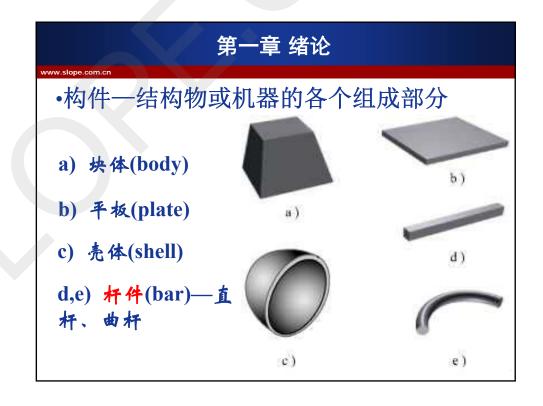
本课程主讲人: 朱鸿鹄教授\博导

办公室:南京大学仙林校区朱共山地科 大楼362室

Email: zhh@nju.edu.cn

➤网站: www.slope.com.cn

www.slope.com.cn


§ 1-1 弹性力学的内容

一、研究任务

弹性力学(Elasticity)是<mark>固体力学</mark>的一个分支,研究<mark>弹性体</mark>由于受外力作用、边界约束、温度改变等原因发生的应力、形变和位移。

二、研究对象

弹性力学的研究对象为一般及复杂形状的 构件、实体结构、板壳等。

ww.slope.com.cn

三、与其它学科的关系

理论力学(Theoretical Mechanics): 研究刚体的静、动力学(约束力、速度、加速度);

材料力学(Mechanics of Materials): 研究杆件(直杆、小曲率杆) 在拉压、剪切、弯曲、扭转及组合状态下的应力和位移,解决杆件的强度、刚度、稳定性问题;

结构力学(Structural Mechanics): 研究杆系结构的内力与位移,解决杆系的强度、刚度、稳定性问题;

www.slope.com.cn

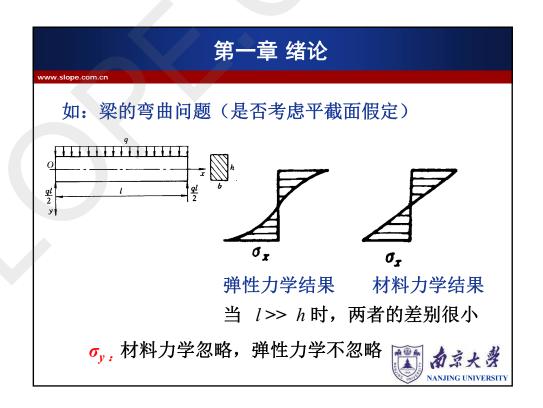
弹性力学(Elasticity):一般平面问题、板、 壳和实体结构等的应力和位移分析,解决 弹性体的强度、刚度、稳定性问题。

塑性力学(Plasticity):结构的塑性分析、设计。

第一章 绪论

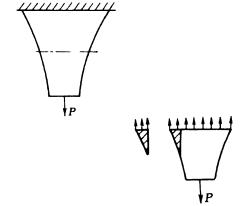
www.slope.com.cn

除了研究对象,在研究方法上,弹性力学和材料力学、结构力学也有区别:


- 材力、结力借助于直观和实验现象作一些假定,如平面假设等,然后由静力学、几何关系、物理方程三方面进行分析。
- 材力、结力常常引用近似的计算假设来简化问题,并在许多方面进行了近似的处理。因此它们建立的是近似理论,得出的是近似的解答。从其精度来看,该类解法只能适用于杆件形状的结构。

www.slope.com.cr

弹性力学研究方法:


- ●在弹性体区域 / 內严格考虑<mark>静力学、几何学和物理学</mark>三方面条件,建立三套微分方程,放弃了材力中的大部分假定;
- ●在边界*s*上严格考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

www.slope.com.cn

如: 变截面杆受拉伸(净截面上应力是否均匀分布)

弹性力学以微元体 为研究对象,建立 方程求解,得到弹 性体变形的一般规 律。所得结果更符 合实际。

第一章 绪论

www.slope.com.cn

在数学理论基础方面的区别

材料力学、结构力学方程

—— 常微分方程(最高4阶,单变量)

例如: $EIy'' = \pm M(x)$

弹性力学方程

—— 偏微分方程(高阶,二、三个变量)

例如:
$$\left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial x^2}\right)(\sigma_x + \sigma_y) = -(1 + \mu)\left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}\right)$$

为了简化计算,采用<mark>数值解法</mark>:能量法(变分法)、差 分法(FDM)、有限单元法(FEM)等。

www.slope.com.cr

本课程较为完整地建立了弹性力学的基本方程和边值条件,并对一些<mark>简单问题</mark>进行了求解。弹性力学基本方程的建立为进一步的数值方法奠定了基础。

弹性力学提供了解决岩土工程中基本理论 问题的重要手段与方法,是学习**弹塑性力学、** 高等土力学、岩土工程数值分析等研究生课 程的重要基础。

第一章 绪论

www.slope.com.cr

§ 1-2 弹性力学中的几个基本概念

(一) 外力

按照外力作用的不同分布方式,可分为体积力和表面力,分别简称体力(body force)和面力(surface force)。

在理论力学和材料力学中只有集中力 (concentrated force) 和分布力 (distributed force)两类。

www.slope.com.cn

1. 体力

- (1) 定义: 所谓体力是分布在物体体积内的力, 如重力、磁场力、惯性力。
- (2) 性质:一般情况下,体力随点的位置不同而不同,体力是连续分布的。体力是个矢量(vector)。

第一章 绪论

.slope.com.cn

(3) 体力集度:

体力的平均集度为: $\frac{\Delta \vec{F}}{\Delta V}$

P点所受体力的集度为:

$$\vec{f} = \lim_{\Delta V \to 0} \frac{\Delta \vec{F}}{\Delta V}$$

z ΔV f $A\bar{F}$ y

图1-1(a)

 \vec{f} 的方向就是 $\Delta \vec{F}$ 的极限方向。

www.slope.com.cn

(4) 体力分量:

将*f* 沿三个坐标轴分解,可得到三个正交的分力:

$$\vec{f} = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}$$

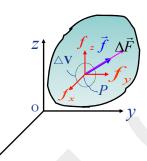


图1-1(a)

南京大学

 f_x 、 f_y 、 f_z 称为物体在P点的体力分量,其方向与坐标轴正向相同时为正,因次是[力][长度]-3。

单位: N/m³ kN/m³

第一章 绪论

ww.slope.com.cn

2. 面力

- (1) 定义:分布在物体表面上的力。如流体压力和接触力。
- (2) 性质:一般情况下,面力一般是物体表面点的位置坐标的函数。面力也是个矢量。

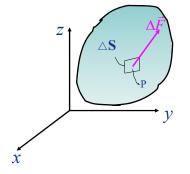


图1-1(b)

www.slope.com.cn

(3) 面力集度:

 ΔS 上面力的平均集度为:

$$\frac{\Delta \vec{F}}{\Delta S}$$

P点所受面力的集度为:

$$\overline{f} = \lim_{\Delta S \to 0} \frac{\Delta \vec{F}}{\Delta S}$$

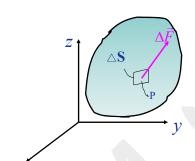


图1-1(b)

.slope.com.cn

(4) 面力分量:

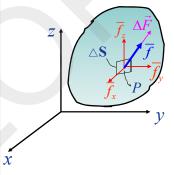


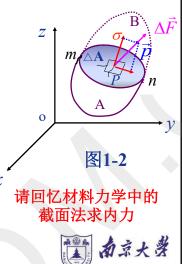
图1-1(b)

P点的面力分量 为 \overline{f}_x 、 \overline{f}_y 、 \overline{f}_z ,其方向与 坐标轴正向相同时为正, 因次是[力][长度]-2。

单位: 1N/m²=1Pa (帕)

 $1kN/m^2 = 10^3Pa = 1kPa$ (千帕)

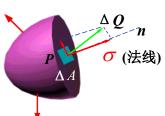
1MN/m² = 10⁶Pa = 1MPa (光帕)



ww.slope.com.cn

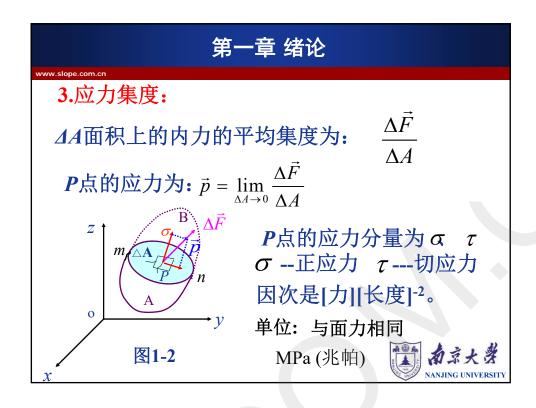
(二) 应力

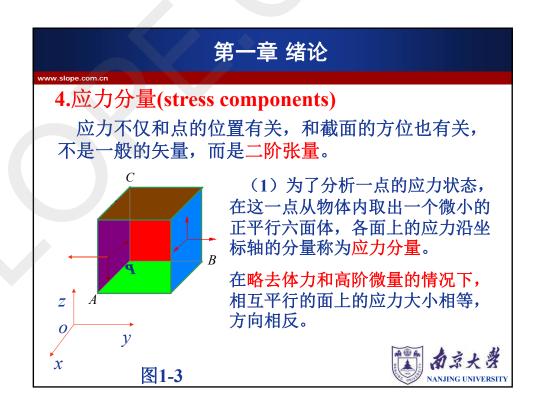
1.定义: 物体承受外力作用,物体内部各截面之间产生附加内力,为了显示出这些内力,我们用一截面截开物中,我们用一部分,其中一部分的作用,表现为内力,它们是分布在截水面上分布力系的合力。单位面积上的分布力即为应(Stress)。

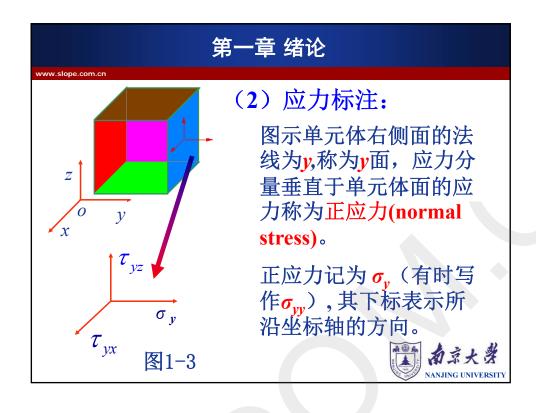


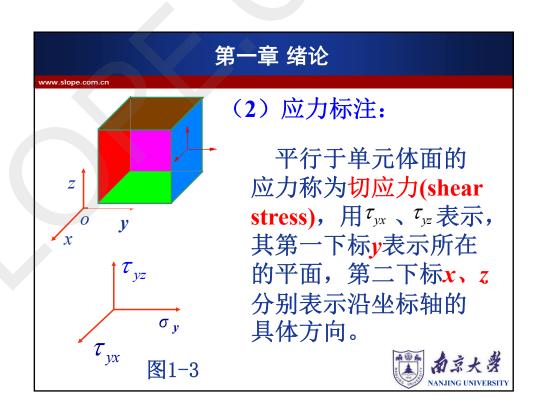
第一章 绪论

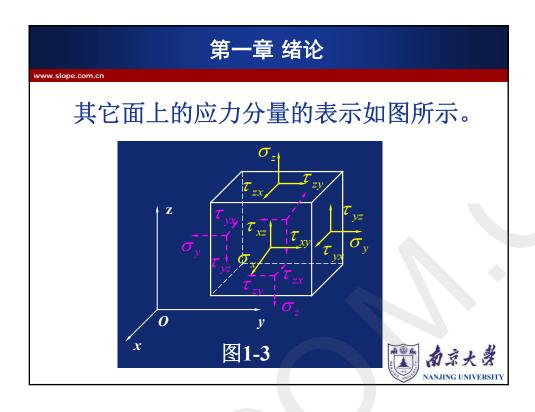
ww.slope.com.cn

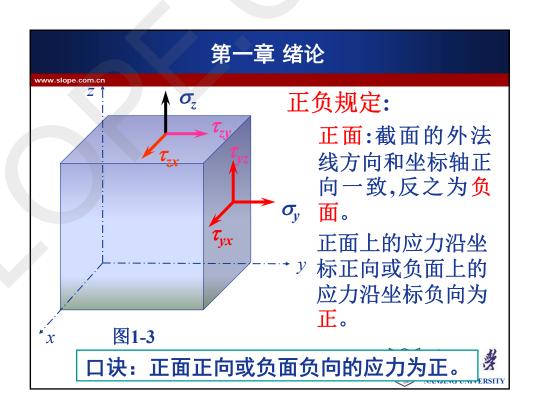

2.性质: 在物体内的同一点,不同截面上的应力是不同的。

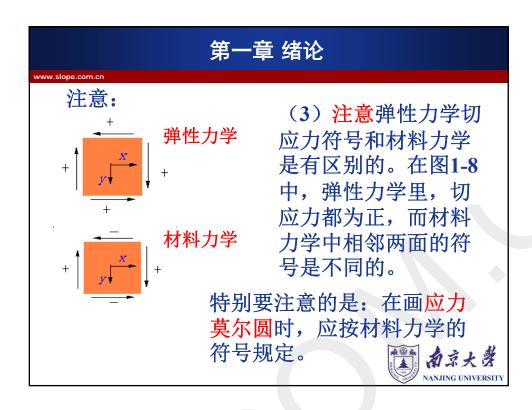

材料力学:通过一点P 的各个面上应力状况的集合,称为一点的应力状态(state of stress at a point)

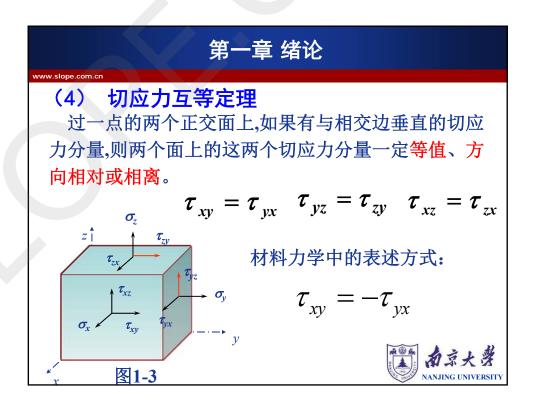



请同学们回忆一下什么是主应力、主方向......









www.slope.com.cn

一篇有重大争议的论文

2001年9月第21卷第3期

四川地质学报

Vol. 21 No. 3 Sep. ,2001

关于剪应力和剪应变的思考

熊道锟

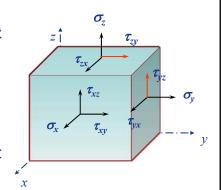
(四川省华地建设工程有限责任公司,四川成都 610081)

摘 要:对力学中广泛应用的剪应力互等定理提出了质疑,认为该定理并不能广泛成立。根据内力分析的基本原理,运用截面法分析了该定理成立的条件和适用的范围。回顾了现有剪应变概念的主要描述形式,在讨论和分析其内涵的不确定性的基础上,对剪应变的概念作了修正。

关键词:剪应力互等定理;质疑;截面法;剪应变;概念;修正

中图分类号:0 343.4 文献标识码:A 文章编号:1006 - 0995(2001)03 - 0129 - 04

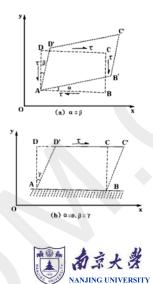
第一章 绪论


www.slope.com.cn

• 如何推导剪应力互等定理?

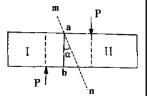
以单元体在外力作用下处于静力平衡状态为前提条件,以力矩平衡原理为依据。 作者认为这种方法不对!

"将力矩平衡原理运用于内力不恰当。 为什么? 众所周知,内力是物体内部产生 的对外力作用的抵抗力,它随外力的增大 而相应地增大。物体(或单元体) 能否处 于平衡状态,只取决于外力是否达到平衡,


而不在于内力是否达到平衡。内力的作 用只是使物体产生相应的变形而已。"

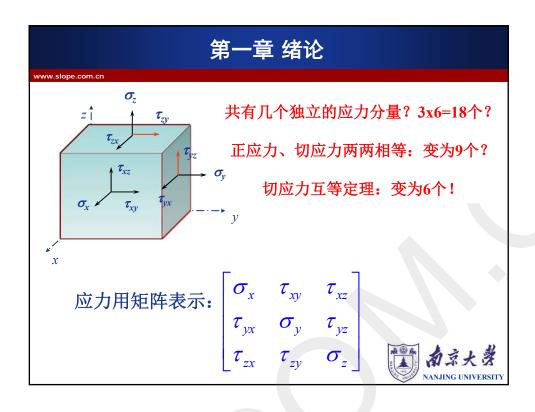
www.slope.com.cn

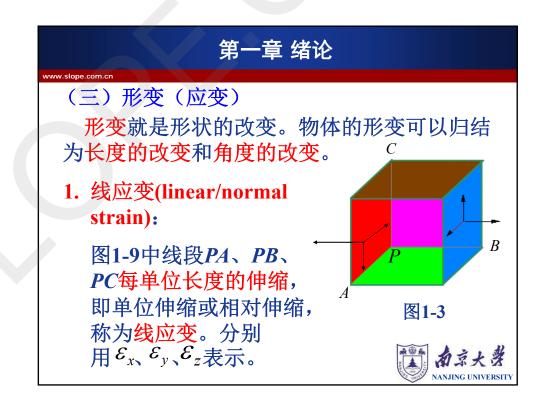
- 如果剪应力互等定理能够广泛成立,由两个相互垂直截面上的剪应力大小相等、指向相反的条件,依据应力大小及方向的对称性,长方形单元体ABCD中的直角BAD 只能产生图a 所示的变形,即x 方向的直线AB 的偏转角 α 等于y 方向的直线AD 的偏转角 α 等于y 方向的直线AD 的偏转角 α 等于y 方向的直线AD 的偏转角 α 等于y 方向的直线AD 的偏转角 α 与 β 不相等的变形情况。依此推断,也不会出现材料力学中描述过的剪切变形情况(图b),即 α = 0, β = γ 的情形。这说明剪应力互等定理与材料力学中叙述的剪切变形是矛盾的,不一致的。
- 另外,根据剪应力互等定理得出的推论是:剪应力不可能出现仅在一个方向存在应力的单向剪应力状态,而只能出现平面和三向两种剪应力状态,这与正应力既有单向应力状态又有平面和三向应力状态显然不一致,也不合理。

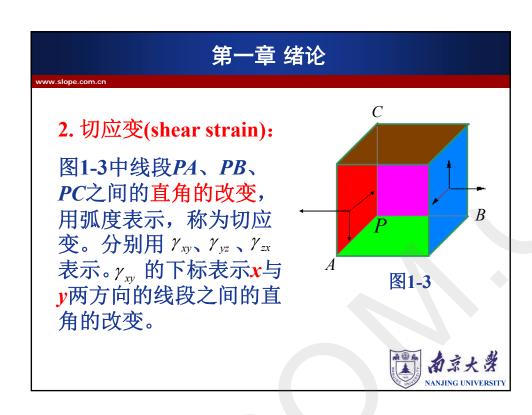


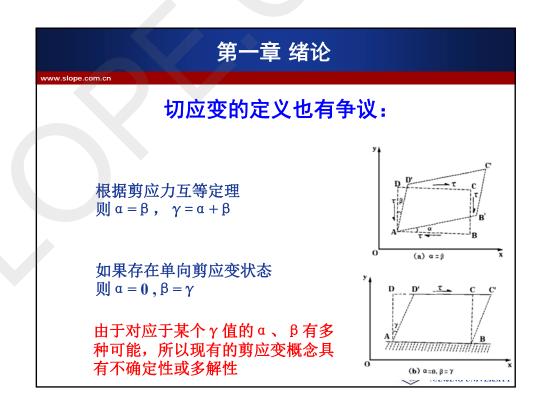
第一章 绪论

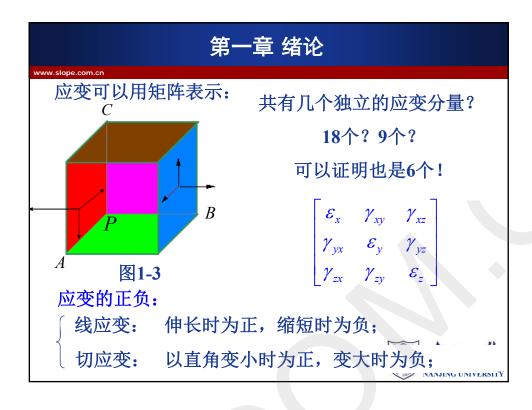
www.slope.com.cn


两个相互垂直截面上的剪应力究竟是什么关系呢?


- · 分析材料力学中的剪切情况,如果受剪切物体的横截面积为S,剪切力为P,其大小相等、方向相反。在两剪力的作用线之间用一假想截面mn (与横截面 ab 和剪力P 的夹角均为 α ,所以截面mn 的面积为S/ cosa))将物体截开,移去II 部分,留下I 部分。
- 再用截面上的内力代替作用在移开部分 II 上的外力,即 I 部分在截面mn 上的内力 Q 等于作用在 II 部分上的外力 P。因此,在截面mn 上的剪力,即内力 Q 平行于截面的分力为 $Q\cos a$ 。若T=Q/S,则截面mn 上的剪应力为 $T_a=\tau\cos^2a$ 。根据三角函数诱导公式,求得与截面mn 垂直的截面上的剪应力 $T_{90+a}=\tau\sin^2a$ 。
- 由此可见,当外力为剪力作用时,两个相互垂直截面上的剪应力不一定相等。另外可以证明,当外力为轴向力时,剪应力互等定理成立。





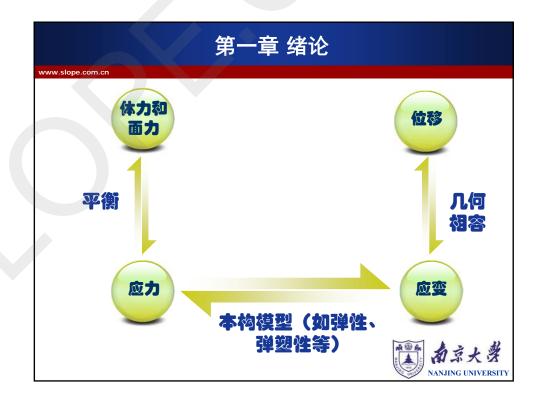


(四) 位移(displacement)

位移: 物体变形时各点位置的改变量

- 1. 当物体各点发生位置改变时,一般认为是由 两种性质的位移组成:
- (1) 整个物体像一个刚体一样运动所引起的位 移,包括平移、转动、平面运动等。这种位移并 不使物体的形状、质点间的相对距离发生变化。

(刚体位移)


(2) 物体内各点之间有相对位移,因而物体产 生了变形。弹性力学中主要研究物体由变形而引 起的位移。

www.slope.com.cn

2. 位移的表示方法

物体内任意一点的位移,用它在x、y、z 轴上的投影 u、v、w来表示,以沿坐标轴正 向为正,沿坐标轴负向为负。这三个投影称 为该点的位移分量。

弹性力学问题:

www.slone.com.cr

§ 1-3 弹性力学中的基本假定

- •工程问题的复杂性是诸多方面因素组成的。<mark>如果不分主次考虑所有因素</mark>,则问题的复杂,数学推导的困难,将使得问题无法求解。
- •根据问题性质,忽略部分暂时不必考虑的因素, 提出一些基本假定(basic assumption),使问题 的研究限定在一个可行的范围。
- •基本假定是学科的研究基础。
- •超出基本假定的研究领域是固体力学其它学科的研究范围。

第一章 绪论

www.slope.com.cn

1. 连续性假设(Continuity)

- •——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
- — 一变形后仍然保持连续性。
- •根据这一假设,物体所有物理量,例如位移、应变和应力等均为物体空间的连续函数。

$$u = u(x, y, z)$$
 $\varepsilon_x = \varepsilon_x(x, y, z)$ $\sigma_x = \sigma_x(x, y, z)$

•微观上这个假设不成立——宏观假设。

www.slope.com.cr

- 2. 均匀性假设(Homogeneity)
- •——假设弹性物体是由同一类型的均匀材料组成的。因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。
- •——物体的弹性性质处处都是相同的。
- •工程材料,例如混凝土颗粒远远小于物体的几何形状,并且在物体内部均匀分布,从宏观意义上讲,也可以视为均匀材料。
- •对于环氧树脂基玻璃纤维复合材料,不能处理为均匀材料。

第一章 绪论

www.slope.com.cn

- 3. 各向同性假设(Isotropy)
- •——假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常数将不随坐标方向的改变而变化。
- •当然,像木材、竹以及纤维增强材料等,属于各向异性材料。
- •——这些材料的研究属于复合材料力学研究的对象。

南京大學

www.slope.com.cr

- 4. 完全弹性假设(Perfect Elasticity)
- •——对应一定的温度,如果<u>应力和应变之间</u> 存在一一对应关系,而且这个关系和时间无关, 也和变形历史无关,外力消失后能够恢复原形, 称为完全弹性。
- •完全弹性分为<mark>线性和非线性</mark>弹性,弹性力学研究限于线性的应力与应变关系。
- •研究对象的材料弹性常数不随应力或应变的变化而改变。

第一章 绪论

www.slope.com.cn

线弹性假定: 假定物体完全服从胡克定律(Hooke law), 应力与应变间成线性比例关系(正负号变化也相同)。

比例常数 —— 弹性常数 (E、μ)

脆性材料——一直到破坏前,都可近似为线弹性的;

塑性材料——比例阶段,可视为线弹性的。

作用:可使求解方程线性化

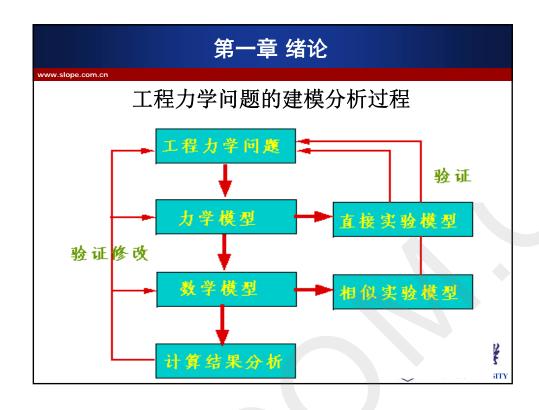
符合上述4个假定的物体,称为<u>理想弹性体</u>(perfect elastic body)。

www.slope.com.cn

- 5. 小变形假设(Infinitesimal Deformation)
- ——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何 尺寸相比属于高阶小量。
- ——在弹性体的平衡等问题讨论时,可以不 考虑因变形所引起的尺寸变化。
- ——忽略位移、应变和应力等分量的高阶微量,使基本方程成为<mark>线性的偏微分方程组</mark>。

第一章 绪论

www.slope.com.cn


另外,还有一个教材中未提到的:

无初始应力假设(Non-initial-stress)

——假设物体处于自然状态,即在外界因素作用之前,物体内部没有应力。

弹性力学求解的应力、位移仅仅是外力、 边界约束或温度改变而产生的。

ww.slope.com.cn

工程力学问题建立力学模型的过程中,一般作三方面进行简化:

结构简化

如空间问题向平面问题的简化,向轴对称问题的简化,实体结构向板、壳结构的简化。

受力简化

如:根据圣维南原理,复杂力系简化为等效力系等。

材料简化

根据各向同性、连续、均匀等假设进行简化。

www.slope.com.cr

在建立数学模型的过程中,通常要注意分清问题的性质进行简化:

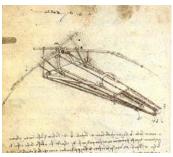
线性化:对高阶小量进行处理,能进行线性化的,进行线性化。

模型建立以后,对计算的结果进行分析整理,返回实际问题进行验证,一般通过实验验证:

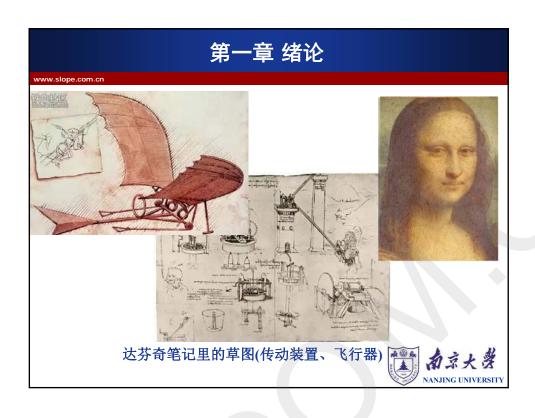
直接实验验证: 直接实验比较简单时可以直接进行, 但有时十分困难。

相似模型实验: 相似实验的模型一般应与实际问题的边界条件和形态是几何相似的。

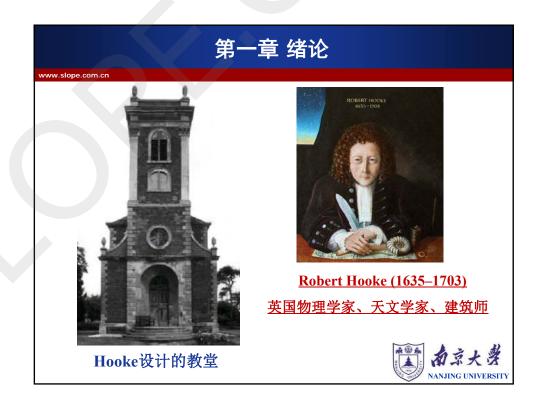
第一章 绪论


www.slope.com.cn

§ 1-4 弹性力学的发展和研究方法


1. 学科发展历史

弹性力学是一门历史悠久的学科,早期研究可以追溯到17世纪。达芬奇、伽利略、牛顿等人都做过相关的研究。



达芬奇笔记里的草图(机械、武器、建筑)

大师耕耘 (1700-1880)

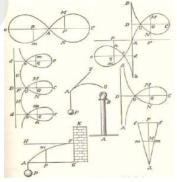
•1705年, 【瑞士】Jacob Bernoulli (贝努利) 首 先提出了应力和应变的原型概念。

Jacob Bernoulli 1654-1705 兄弟 Johann Bernoulli 1667-1748 父子

Daniel Bernoulli 1700-1782

弹性梁、板的变形

虚功原理


杆的振动方程、流体力学

瑞士一个生产数学家和物理学家的家族,先后产生过11个科学家,,,,,

第一章 绪论

www.slope.com.cn

•1727年,Johann Bernoulli 的学生、数学家【瑞士】 Leohard Euler (欧拉)提出了应力、应变之间具有线 性关系。1744年,他对杆件的屈曲问题进行了系统研 究。

1707-1783 瑞士数学家、力学家 1 日本大分

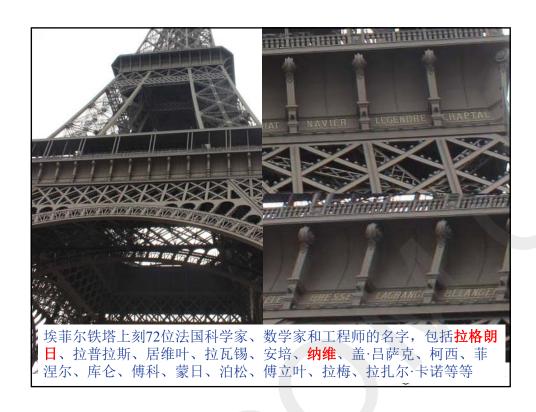
NANJING UNIVERSITY

www.slope.com.cr

- •近代弹性力学的研究是从19世纪开始的。
- •1807年、【英】Thomas Young 做了大量的实验,提出和测定 了材料的弹性模量(也称杨氏 模量)。

托马斯· 杨(1773~1829) 英国物理学家、医生、波动光学 的奠基人

第一章 绪论


www.slope.com.cn

•拉格朗日(J.L.Lagrange)的学生【法】Claude-Louis Marie Henri Navier(纳维)1821年提出了用位移表示的控制方程(纳维方程),出版了著作《力学在结构和机械方面的应用》

数学家纳维(1785-1836)

ww.slope.com.cn

•【法】Augustin Louis Cauchy(柯西)1822-1828年 提出完整的应力、应变概念, 建立了平衡微分方程、几何 方程和广义胡克定律; 1853 年提出半逆解法。

•柯西的工作是近代弹性力学的一个起点,使得弹性力学成为一门独立的固体力学分支学科。

数学家柯西(1789-1857), 收 敛级数提出人

NANJING UNIVERSITY

埃菲尔铁塔上刻72位法国科学家、数学家和工程师的名字,包括拉格朗日、拉普拉斯、居维叶、拉瓦锡、安培、纳维、盖·吕萨克、**柯西**、菲涅尔、库仑、傅科、蒙日、泊松、傅立叶、拉梅、拉扎尔·卡诺等等

第一章 绪论

ww.slope.com.cn

•【法】Gabriel Lame(拉梅)1828年提出拉梅方程,解决了厚壁圆筒的计算问题。

$$\begin{cases} \frac{1}{1-2\mu} \frac{\partial e}{\partial r} + \nabla^2 u_r - \frac{u_r}{r^2} = 0\\ \frac{1}{1-2\mu} \frac{\partial e}{\partial z} + \nabla^2 w = 0 \end{cases}$$

拉梅, G.

数学家、工程师、科学院 院士拉梅(1795-1870)

www.slope.com.cr

•【法】Simon Denis Poisson (泊松)研究了物体的横向变形,1829年提出了泊松比的概念

Foam structures with a negative Poisson's ratio, Science, 1987, 235,1038-1040

数学家、物理学家泊松(1781-1840),电磁学、行星理论提出人 🕺

NANJING UNIVERSITY

埃菲尔铁塔上刻72位法国科学家、数学家和工程师的名字,包括拉格朗日、拉普拉斯、居维叶、拉瓦锡、安培、纳维、盖·吕萨克、柯西、菲涅尔、库仑、傅科、蒙日、<mark>泊松</mark>、傅立叶、拉梅、拉扎尔·卡诺等等

www.slope.com.cn

- •而后,世界各国的一批学者相继进入弹性力学研究领域,使弹性力学进入发展阶段。
- •【英】数学家、物理学家George Green (格林)和Lord Kelvin(开尔文)对<mark>弹性应</mark> 变能做了深入研究,格林函数解法、半逆解 法等逐渐出现

第一章 绪论

www.slope.com.cn

•1856年,纳维的学生、巴黎路桥学院教授【法】 Adhemer Jean Claude Barre de Saint-Venant (圣维南) 建立了柱体扭转和弯曲的 基本理论;并提出了弹性 力学中的著名原理——圣 维南原理 (P21)

www.slope.com.cn

·1862年,【英】艾里 (G.B. Airy) 发表了关于 弹性力学平面问题的理论 (P31),提出了应力函数 (Airy stress function)的概 念。

英国天文学家和数学家, 格林尼治天文台台长

第一章 绪论

ww.slope.com.cn

【德】Gustov Robert
Kirchhoff曾在海德堡大学
和柏林大学任物理学教授,他发现了电学中的"基尔 霍夫定理",同时也对弹 性力学,特别是薄板理论 的研究作出重要贡献 (1876年提出Kirchhoff 薄板理论)。

德国物理学家 (1824-1887)

 $\frac{\mathbf{A}(\sigma_x, \tau_{xy})}{R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}}$

第一章 绪论

www.slope.com.cn

【俄,美籍】Stephen P.
Timoshenko(铁木辛柯)为德国哥廷根学派代表人物,对梁、板、壳等做了大量的研究,曾在密歇根大学和斯坦福大学任教,写了13本经典力学教材,是一位德高望重的弹性力学教育家。

归纳法(铁氏)体系--演绎法体 系

(1835 - 1918)

南京大学

NANJING UNIVERSITY

铁木辛柯(1878-1972)

www.slope.com.cn

弹性力学进入更深入的发展时期是在 1907年以后,非线性弹性力学迅速地 发展起来。冯·卡门提出了薄板的大挠 度问题(解决战斗机结构问题);之 后和钱学森提出了薄壳的非线性稳定 问题、空气动力学的"卡门-钱学森公 式"。

第一章 绪论

www.slope.com.cn

- 国外许多著名科学家,像【法】拉格朗日 (J.L. Lagrange)、【英】乐甫(A.E.H. Love)、 【英】麦克斯韦(James Clerk Maxwell),都对 弹性力学做出了贡献。
- 1950年以后,弹性力学研究进入新的历史时期。中国科学家钱伟长、钱学森、徐芝纶、胡海昌等在弹性力学的发展,特别是在中国的推广应用做出了重要贡献。

www.slope.com.cn

中国导弹之父 钱学森(1911-2009)

交通大学铁道工程系毕业,MIT硕士,加州理工学院博士,师从<mark>冯·卡门</mark>。28岁时成为世界知名的空气动力学家,担任加州理工学院助理教授、副教授,MIT教已理教授、副教授,MIT教已里,为"两弹献。1955年回国,为"两弹献。2005年当面向温家宝总理提出"钱学森之问":总是出"钱学森之问":总是,"为什么我们的学校总是培养不出杰出人才?"

第一章 绪论

www.slope.com.cn

中国力学之父 钱伟长(1912-2010)

清华大学历史系转学物理系。1940年赴加拿大留学,用50天完成论文《弹性板壳的内禀理论》,1942年获多伦多大学应用数学系博士学位。

1942-1946 年任美国加州理工学院喷射推进研究所研究总工程师,师从四·卡门进行博士后研究。发表了世界上第一篇关于奇异摄动的理论,被国际上公认该领域的奠基人。

www.slope.com.cr

徐芝纶(1911-1999)

河海大学教授,中科院资深院士,著名的力学家和教育家。1934年毕业于清华大学,1936年获MIT硕士学位,1937年获Harvard大学硕士学位。

徐芝纶编著的力学教材被我国广泛采用。徐芝纶在基础板梁的科研工作中作出了许多重大成果,并为在我国引进、推广、研究有限单元法作出了突出贡献。

www.slope.com.ci

<u>弹性力学的解法</u>也在不断地发展。首先是变分法(能量法)及其应用的迅速发展,出现了瑞利-里茨法、伽辽金法等。

其次,数值解法也广泛地应用于弹性力学问题。在20世纪30年代及以后,出现了用复变函数理论求解弹性力学问题的方法。 1946年之后,又出现了有限单元法(Finite Element Method, FEM),并且得到迅速的发展和应用,成为现在解决工程结构分析的强有力的工具。

第一章 绪论

ww.slope.com.cn

弹性力学问题的研究方法包括:

1、解析法一根据弹性体的静力学、几何学、物理学等条件,建立区域内的微分方程组和边界条件,并应用数学分析方法求解这类微分方程的边值问题,得出的解答是精确的函数解(精确解)。

www.slope.com.cr

- 2、变分法(能量法)一根据变形体的能量 极值原理,导出弹性力学的变分方程,并进行 求解。这也是一种独立的弹性力学问题的解法。 由于得出的解答大多是近似的,所以常将变分 法归入近似的解法。
- 3、**差分法(FDM)**—是微分方程的近似数值解法。它将弹性力学中导出的微分方程及其边界条件化为差分方程(代数方程)进行求解。

第一章 绪论

www.slope.com.cr

- 4、有限单元法(FEM)—是近半个世纪发展起来的非常有效、应用非常广泛的数值解法。它首先将连续体变换为离散化结构,再将变分原理应用于离散化结构,并使用计算机进行求解的方法。
- 5、<mark>实验方法</mark>一模型试验和现场试验的 各种方法。

对于许多工程实际问题,由于边界条件、外荷载及约束等较为复杂,所以常常应用以上的近似解法来求解。

南京大學

www.slope.com.cr

§ 1-5 弹性力学的学习方法

弹性力学的公式推导比较繁复,不便记忆, 因此初学者会感到困难。

由于基本方程是<mark>偏微分方程组</mark>,直接求解 是十分困难的,只有在边界条件比较简单时, 可以解出,大多需要通过数值方法求解,因此 基本方程的意义很大程度上是为将来其它课程 的学习打基础。

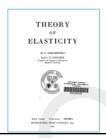
第一章 绪论

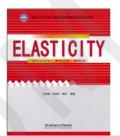
www.slope.com.cn

本课程教材

- 《弹性力学简明教程》(第五版),徐芝纶编, 高等教育出版社,2018年
- ❖ 入选"十五"国家级规划教材,一、二、三版的 累计印数为50万余册。

1980-1983-2002-2012-2018




www.slope.com.cn

参考书目

- ❖《弹性力学》(第四版),上下册,徐芝纶编, 高等教育出版社,2006
- ❖《Theory of Elasticity》, Timoshenko 和 Goodier编著,McGRAW-HILL,1951 (清华大学出版 社出版了影印版)
- ❖《Elasticity》,伍章健等编著,北京理工大学 出版社,2010

第一章 绪论

www.slope.com.cn

网络资源

- ※北京大学网络课程《弹性力学》 http://www.mech.pku.edu.cn/elasweb/introduce.htm
- ❖河海大学精品课程《弹性力学及有限单元法》 http://online.hhu.edu.cn/jpkc2008/txlx/shouye.asp 或http://www.icourses.cn/coursestatic/course_2874.html
- ❖本课程课件在http://www.slope.com.cn下载

www.slope.com.cr

内容回顾

弹性力学的研究对象、内容是什么?与材料力学比较有何异同?

答: 弹性力学研究物体在外界因素影响下处于弹性阶段的应力、应变和位移,其研究对象为一般及复杂形状的构件、实体结构、板壳等。而<u>材料力学</u>是研究杆件在拉、压、剪、弯、扭状态下的应力和位移。

第一章 绪论

www.slope.com.cn

弹性力学中基本假定是什么?

答:为了简化计算,弹性力学中采用如下基本假定:

- (1) 连续性假设,
- (2) 完全弹性假设,
- (3)均匀性假设,
- (4) 各向同性假设,
- (5) 小变形假设。

www.slope.com.cr

什么是小变形假设?小变形假设带来那些简化?

答:假定物体受力以后,整个物体所有各点的位移都远远小于物体原来的尺寸,就是小变形假设。小变形假设,在建立物体变形以后的平衡方程时,可以用变形以前的尺寸来代替变形以后的尺寸,并且,在考察物体的形变及位移时,转角和位移的二次幂或乘积都可以略去不计。这样可使弹性力学中的代数方程和微分方程简化为线性方程。

www.slope.com.cr