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Outline of Lectures:

Lecture 1: Geotechnical analysis (Chapter 1)
Lecture 2: Finite element theory for linear materials

(Chapter 2)
Tutorial 1 — Introduction to GeoStudio and SIGMA/W Examples
Lecture 3: Geotechnical considerations (Chapter 3)
Lecture 4: Real soil behaviour (Chapter 4)
Lecture 5: Elastic and hypo-elastic constitutive models (Chapter 5)
Tutorial 2 — Geotechnical Analysis using SIGMA/W and SLOPE/W
Lecture 6: Elastic-plastic behaviour (Chapter 6)
Lecture 7: Simple elastic-plastic constitutive models (Chapter 7)
Tutorial 3 — Advanced Analysis using SLOPE/W, SIGMA/W &

SEEP/W

Seminar: Case Study
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Lecture 1: Geotechnical Analysis

1.1 Synopsis and 1.2 Introduction
1.3 Design objective

1.4 Design requirements

1.5 Theoretical considerations

1.6 Geometric idealization

1.7 Methods of analysis

1.8 Closed form solution

1.9 Simple methods

1.10 Numerical analysis

1.11 Summary
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1.1 Synopsis AREXRIFEENRE
* A framework for comparison of different methods
* Advantages of numerical analysis over “conventional”
approaches
E1EMENSS: RIAHE. HE
1.2 Introduction €@ (RIS
* Geotechnical structures — made from geological

materials such as soils and rocks

* Geotechnical structures and other structures

* Geotechnical analyses — important

* What are geotechnical analyses — simple ones and
sophisticated ones?
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Cut slope Embankment
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Raft foundation

Piled foundation
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Gravity wall Embedded wall

Figure 1.1: Examples of geotechnical structures
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1.3 Design objectives (¥t H )

Stability (f2 € 74) in different forms

- no danger of local rotational, vertical or translational
failures (see Fig.1.2) and internal failures (reinforcing

elements) BEPEEE + B EENM
- no danger of overall stability failure (see Fig.1.3)

Movements below safe limits (see Fig.1.4) ESERERIAS

Good analyses — simulating real behavior and helping
engineers for better designs

Design process more than analyses — other

considerations !
[ 2 : Iﬁjk ‘%
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Figure 1.2: Local stability
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Figure 1.3: Overall stability
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Figure 1.4: Interaction of structures




1.4 Design requirements (i%iH2K)

« Before design, info is required — basic geometry,
loading conditions, geo-material properties etc.

BRI E B

* Geotechnical site investigation — ground conditions,
properties of soil properties, water level, etc.
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1.5 Theoretical considerations

1.5.1 Requirements for a general solution:

- Stress equilibrium (M /7°F4)

- Compatibility (tH &%)
- Constitutive relationship (4514 < K)

- Boundary (+initial) conditions (A5. #IIG%KMH)
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1.5.2 Equilibrium CF7)

Water flowing through a tank full of sand:
one 1nlet and two outlets.

The concept of stress

Load: L
l Beam | 3
Tank H]’nlet N
TR = —- T, T
':::::*ﬂH:s::: : o | A R tots o P C
cw ww oww d AL C Y e L
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Ll A" E coormormorEm LI A LW
— I Ilf'._--_" —_— N _""'|-|I ||J - = I ] 4 . El " -l ——
| Outlet Outlet |, _
Reaction: 2L/3 Reaction: L/3

- ) :F 4 . . . .
Figure 1.5: Flow trajectories Figure 1.6: Stress trajectories
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(1) 3 Stress Equilibrium Equations

do,. 0T o g0
+ _r
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1.5.3 Compatibility (18 2 #)

o VHMAEMN (MELSASESIHT)
® F A

a) Original b) Non-compatible ¢) Compatible

Figure 1.8: Modes of deformation

RN : HFERNHE?
Overlapping or debonding?
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(2) 6 Strain Displace. Compatibility Equations

8u ov ow

£, = E,=——) & =——

Cox ! oy Oz
__8v_8u __8w_8v __8w_8u
= ox 0y A~ oy 0z A= Ox Oz

Note: T
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. Ox g oy - 0z
__8v_8u __8w_8v __Eiw_@u
& ox Oy &5 oy 0z & ox Oz

6 RAS 43 B3I 70 B 22 [8) AH B4t

As the six strains are a function of only three displacements, they are not
independent. It can be shown mathematically that for a compatible displacement
field to exist, all the above components of strain and their derivatives must exist
(are bounded) and be continuous to at least the second order. The displacement
field must satisty any specified displacements or restraints imposed on the
boundary.
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1.5.4 “P5 X A &M

Now we have :

agx aTJ""' arﬂ =

Tx cy Y 0

dr,, . éo, . 0z, B

ox oy 0z Yy ==
arxz af}'z 80': =

0

8x+8y+6z

__Ou v, __Ow
T TEm YTy T
v du v _ ow du

T T ———  —

Unknowns: 6 stresses + 6 strains + 3 displacements

Equations;

To obtain a solution therefore requires 6 more equations. These come from the

constitutive relationships.

3 equilibrium + 6 compatibility =9

=15

6 more equations are needed!
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1.5.5 &1 75 &

(3) 6 Constitutive Equations (Elemental Behavior)

Wi NhFEPRYELTE:
1 1 |
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1 1
£, —E[Gy —p(o, +0,)] —E[(Hﬂ)ay — O]
1 1
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fAO‘x\ "Du D2 Dis Dia Dis Dis || D&
Ao, D21 D22 D23 D2 Das Das || A8,
Ao, > D31 D3z D3z Dsa Dss Daes || Ag,

< =

At,, D41 Daz Daz Das Das Das A}/,cyr
At Dsy Ds2 Dss Dsa Dss Dse | Ay,
LA Toy | | Ds1 Ds2 De3 Des Des Des | LAJ’zy

| Ac = [D] Ae

-

[D]: Wil EE5ERE

For a linear elastic material the [D] matrix takes the following form:

Sym

© O O

O ]
0 (As, ]
0 Ag,
o [as |
AY xz
0 Ay,
1 —2#' kAyny
2
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Boundary (+initial) conditions
All above are needed to solve a Boundary (+initial)

Value Problem
The constitutive behaviour can either be expressed in terms of total or effective
stresses. If specified in terms of effective stresses, the principle of effective stress
(6 =0'+0)) may be invoked to obtain total stresses required for use with the
equilibrium equations:

Ac' =[D'] Ae;  Ao,=[Dg] Ag; therefore Ao = ([D'}+[D,]) Ae (1.5)

where [D,] is a constitutive relationship relating the change in pore fluid pressure
to the change in strain. For undrained behaviour, the change in pore fluid pressure
is related to the volumetric strain (which is small) via the bulk compressibility of
the pore fluid (which is large), see Chapter 3.
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Interpretation of effective stress.

R P=3N +uA
A
N’
o"=—A— E_ZN’+
A A U
Normal stress: c=0 +u

Shear stress: no change

Terzaghi$ i F5 ZN 77 JF 3

Effective stresses control: both deformation and
shear resistance (or shear strength) since they retlect
soil particle interaction
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1.6 Geometric idealisation (JLA[{& E)

* Idealization necessary — for reasons: time saving,

simplification, etc.

e Plane strain g TINAES

+ Axi-symmetry HHX]FR

: ; 'ﬁjk‘%
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Figure 1.9: Examples
Strain
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However, for elastic and the majority of material idealisations currently used
to represent soil behaviour Dy,=Ds=D.=D,=D,,=D,=0, and consequently
At,.=At,=0. This results in four non-zero stress changes, Ag,, Ao,, Ao, and At,,.

It is common to consider only;the stresses g,, g, and z,, When performing

analysis for plane strain problems. This is acceptable if D,,, D,., D4, D,,, D,,, D,,,

D,,, D,, and D,, are not dependent on o, . This condition 1s satisfied if the soil is
assumed to be elastic. It is also true if the Tresca or Mohr-Coulomb failure
condition is adopted (see Chapter 7) and it is assumed that the intermediate stress
o,=0,. Such an assumption is usually adopted for the simple ang[ysis of
geotechnical problems. It should be noted, however, that these are special cases:
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- Figure 1.710: Examples of axi-symmetry




In this type of problem it is usual to carry out analyses using cylindrical
coordinates » (radial direction), z (vertical direction) and @ (circumferential
direction). Due to the symmetry, there is no displacement in the € direction and the
displacements in the » and z directions are independent of & and therefore the
strains reduce to (Timoshenko and Goodier (1951)):

e e K ik (Sl vl Vo=V =0 _(1-8)

: lﬁjkéﬁ
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1.7 Methods of analysis (571775 1%)

* Meet fully or partially
(a) equilibrium,
(b) compatibility,
(c) material behavior and
(d) boundary (initial) conditions

* Methods of analysis:
(a) Closed form solution analysis (& fB1E/fRITIE)
(b) Simple analysis ({&] B4 HT7%)
(c) Numerical analysis (ZUE 73 1717%)

 Comparison (see Tables 1.1 and 1.2) Z 4 g{

o &
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1.8 Closed form solutions (/44 &/ fé A fiF)

A close form (exact) solution may be obtained for
some simple cases meeting all conditions (a) to (d).

The solution 1s exact 1n the theoretical sense, but still
approximate for the real problem

Close form solutions possible in two cases:

- Assuming material behavior 1sotropic linear elastic
- Geometric symmetries — 3-D reduced to one-
dimensional problem such as expansion of spherical
and infinitely long cylindrical cavitations of elasto-
plastic continuum

a;@ﬁﬁk%
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Kelvin-Voigt model

/
o(t) = E,e(t) + E, d‘;(t) I Y A
_l\/\({\/\/__

A fractional Kelvin-Voigt model
Three-parameter fractional

d°e(t) Kelvin-Voigt model

o(t) = E,e(t) + E,

(21

0<a <1

Zhu, H.-H., Liu, L.C., Pei, HF., and Shi, B. (2012). Settlement analysis of
viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt
model. Geomechanics and Engineering, 4(1), 67-78. DOI: 10.12989/
gae.2012.4.1.067



Depth {m)

Flamant-Boussinesq elastic solution

Po per unit length

(1+y)p
wE

0 cosd

Distance (m)

2p,(1- 1 -
Uy =— Po( a )Siné?lnr—(’qL(1 2,u)(1+,u)p000089
wkE r 7E
2
u = 2Py (l_ﬂ )cosﬁlnﬁJr (=21)(1+ )P @sin 6 —
' TE r rE
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Settlement (mm)

Linear visco-elastic solution

t Do lnﬁ 3 ! 1 !
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1.9 Simple methods (&) 5.7%)

There are 3 types of simple methods (analytical or non-
analytical):

(a) Limit equilibrium method

(b) Stress field (characteristic line) method

(¢) Limit analysis method (upper and lower bounds)

Simple methods are based the following
simplifications (in order to get an approximate)
solution meeting failure criterion:

(a) Constrains are relaxed

(b) Numerical approximations are introduced.

B MRS AR L (ARRETR) |, 8
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1.9.1 Limit equilibrium method (fBIF#XLEM, £} BB 17
%)

* An ‘arbitrary’ failure surface (+slices) 1s assumed

* Equilibrium (force) 1s considered for the failing soil
mass (+slices)

» Stress equilibrium (mass and slices) 1s NOT considered

« Examples:
(a) Coulomb’s wedge analysis (FE &1 & 7713 %)
(b) Method of slices for stability analysis (11514 3%
fa s MR 2K %) H
b 2L
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Coulomb’s wedge analysis — critical height of a vertical cut:
Example: Critical height of a vertical cut

b _ c
- t | Rigid SR
Wsinf3 | T |
W bv H Wl o
LY Wcosp L
v Rigid

oS 2 d

Failure criterion: © = ¢'+o' tan ¢'

Figure 1.11: Failure mechanism for
limit equilibrium solution

The actual distributions of ¢ and 7 along the failure surface ‘ac’, presented in
Figure 1.11, are unknown. However, if / is the length of the failure surface ‘ac’,

then: ;o . ! ,
jrdl = [c'dl + [o'tang’dl = c'l + tang' [o'd! (1.9)
0 0 0 0 '

where ¢’ and ¢’ are the soil’s cohesion and angle of shearing resistance
respectively.
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Applying equilibrium to the wedge ‘abc’, i.e. resolving forces normal and
tangential to failure surface ‘ac’, gives: |

!
jo'dl = Wsinp

(1.10)
j'z'dl = Wcosff

Noting that W—‘/zsztanﬁ and Z“H/cosﬂ Equat1ons (1.9) and (1 10) can be
combined to give: -

2c'cosg
ycos(f+¢') sinf

The value of the angle £ which produces the most conservative (lowest) value of
H is obtained from 0H/0f=0:

H = (1.11)

2}3{_ _ =2c'cos¢’ cds(Zﬂ + ')
op y (sinfg cos(B+ ¢'))’

(1.12)

Equation (1.12) equals zero if cos(26+¢’)=0. Therefore|S = n/4-¢'/2.
Substituting this angle into Equatlon (1.11) yields the Limit equilibrium value
of H: |

NgTw” NANJING UNIVERSITY



2 c' cosg'

H,, =

In terms of total stress, the equation reduces to:

C'=Sy, 9=

ycos(n/4+ ¢ 12)sin(n/4—g' /2)

H, =

48,
Y

tan(n/4+¢’'/2) (1.13) _

(1.14)
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{A Short Course in Soil and Rock Engineering) :

EAPSEERS e

e
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These predictions would be unsafe in practice

because real clay soils are weak in tension.

Considering tension cracks, ...

3858,

Iﬂ*"r;’{ﬂ l'ension crack 187 0 25 Sm
Sandstone 3 M el
siraln e e toe starts to shear outwards |

[ mMmder comiinuons compressive
=—===T"sfress from the cresi

Interbedding 1"1‘ e

strila Elmroas

|z x &%
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Considering tension cracks, ...

Assume the depth of tension crack p)_ H , following
Terzaghi (1943). 2
We get 2.67§
H, ==
/4

This gives a more realistic prediction for the

height of a temporary vertical cut in clay.

(A : 'ﬁjké{
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I A N90° B I B R = B AR PR T ##V%:  Analysis of
Finite Slopes with Plane Failure Surfaces (Culmann’s Method)
from “Principle of Geotechnical Engineering” by B. M. Das

Culmann (1875)’s analysis 1s based on the assumption that the
failure of a slope occurs along a plane when the average shearing
stress tending to cause the slip 1s more than the shear strength of
the soil. Also, the most critical plane 1s the one that has a
minimum ratio of the average shearing stress that tends to cause
failure to the shear strength of soil.

T = ¢ + o' tan ¢’

b s % :-‘:?'
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T c' + o' tan ¢’
Unit weight of soil =

Figure 15.10 shows a slope of height A. The slope rises at an
angle b with the horizontal. AC 1s a trial failure plane. If we

consider a unit length perpendicular to the section of the slope, we
find that the weight of the wedge ABC is equal to

W =3(H)(BC)(1)(y) = sH(H cot8 — H cot B)y
sin(8 — 6‘]]
sin f3 sin #

?H{

I
2
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7r=¢ + o' tan ¢’
Unit weight of soil = y

|1"*-f"fE = normal component = W cos # = —yH~

T, = tangential component = W sin 8 = SYH"

The average effective normal
stress and the average shear
stress on the plane AC are,
respectively,

= —vyH

Tz@)(u:(h‘)

The normal and tangential
components of W with
respect to the plane AC are
as follows.

[sin(8 — 0) -
[m]ﬂ‘ﬂsﬁ (15.19)
1 j[ﬂﬂﬁ-'m

sin 3 sin f

NH N{I

}sin 6 (15.20)

I

(AC)(1) ( H )

sin ¢

1 sin(f — 6
- [glmsﬁ sin ¢ (15.21)

sin 3 sin ¢

T T,

sin @

1 H[sin(ﬁ—ﬁ)] .

- - sin” @ (Q22)
sin 3 sin 6



N The average resistive
! N shearing stress developed

R along the plane AC also
may be expressed as

7r=¢ + o' tan ¢’
Unit weight of soil = y

Td = L‘;l + 'l’_'."|| tan Cllfl':‘l

1 [aiﬂ(ﬂ — 6)

[
— Cag v Y

> ]cns A sin 6 tan ¢y (15.23)

sin 3 sin 0

Now, from Egs. (15.22) and (15.23),

1TH[5i"(I3 & 9)] 1 {sin(ﬁ? — 6)

.« 7 ’
sin“ 0 =c¢,; + —
sin 3 sin & g Y sin 3 sin #

> ]cos fsinftan ¢d; (15.24)

| sin([f — @)(sin & — cos @ tan ¢,
cy= E’}'H[ (B ~ O - "")] (1525)
Y 4 i %
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The expression 1n Eq. (15.25) 1s derived for the trial failure
plane AC. In an effort to determine the critical failure plane,
we must use the principle of maxima and minima (for a given
value of ¢’d) to find the angle 6 where the developed
cohesion would be maximum. Thus, the first derivative of cu
with respect to 6 1s set equal to zero, or

dcy

il

=0 (15.26)

Because y, H, and f are constants in Eq. (15.25), we have

%[Si"(ﬁ — BA)(sinf —cosftandy)]| =0 {15.2?}. _‘%* ,#
<~ avJING UNIVERSITY



Solving Eq. (15.27) gives the
critical value of 6, or

(15.28)

Substitution of the value of 6 = Ocr into Eq. (15.25) yields

-:,:H[l — cos(fB — (,b;r)]

: , (15.29)
4 sin 3 cos ¢y

Cy =

The maximum height of the slope for which critical equilibrium

occurs can be obtained by substituting ¢’« = ¢’ and ¢’4 = ¢’ into Eq.
(15.29). Thus, === ==~~=========--

1
1 . |
I _4c'[ sinBcos } I N #
| e ) | B Z K 2
1
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12,/!‘#;\{\,{ . = 4c’ [ sin B cos ¢’
‘ T oy l1—cos(B—¢)

Tf:cr + o' tan ¢’

rEm—————— |

Thus, i 1, =2> | The same solution!
i Y 1
P — |

ALY
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Coulomb’s wedge analysis — retaining wall:
C el

—% slip surface

>N
@
R

(b) force polygon

(a) forces acting on
the active wedge

Fig. 8.17 Coulomb’s wedge theory

maximum value of P, is located and evaluated. First, the weight of the wedge
is required and then the solution may be obtained analytlcally or graphlcally

Weight of wedge ABC, W= %y sin(a + fyAB-AC

where y=unit weight of the soil
AC =length AC=AB P10 )
L sin(@ — p) : : ;.f k ‘¥
AB=length AB=H/sina .
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Worked example 8.8 Usmg Coulomb’s method, calculate the active thrust actmg on a -
vertical wall of height 6.0 m due to a mass of homogeneous so:l havmg an unsurcharged

horizontal surface and the followmg propertles
¢=0 ¢'=30° o=15° 'y—19 kN/mz

Trial angles of the slip surface (6) will be chosen of 56° 58°, 60°, 62°, 64°, 66°. An analytical
solution is relatively straightforward here; the model polygon of forces is shown in Fig. 8.18.

Resolving vertically: W — R cos(@ — ¢')— P, cos(oc— &) =0

Resolving horizontally: R sin(6 — ¢')— P, sin(x—3)=0
w
From which: P,= —_—
- «  Sin(oc— )
cos(a— )+ — '
o tan(@ o)

Now, o =90° and sin(ox— ﬁ) sin 90° = 1; AB H /s1n o= 6 0 m; cos(a—8)= cos(90° — 15°) '
0.2588 and sm(oc—-5) 0.9659.

AC=AB sm(cx + 9)/s1n19 ﬁ) 6 0 X s1n(90° + 9)/ 1 0
Weight, W =1y sm(fx +ByAB-AC=9.5 x 1.0 x 6.0 x AC

NI EEE
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Y IIIIIIIY. EN

S ' R | Rsin(0—¢’)
' polygon of forces

Fig. 8.18 Worked example 8.8. Polygon of forces

-

and

- Py,=W/[sin(a— 5)+cos(oc-—-5)/tan(6 ¢)]= W/[O 9659 + 0. 2588/tan(9 ]
Tabulatlng the results |

VDL
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Trial angle 0  sin(a+0)

AC Weight W tan(0—¢') P,

(deg) (m)  (kN/m) (kN/m)
56 0.5592 3355 191.2 0.4877 85.4

58 0.5299 3.180 181.2 0.5317 87.3

60 0.5000 3.000 171.0 0.5774 '88.5

62 0.4695 2.817 160.6 06249 890

64 0.4384 2,630 1499 0.6745 88.7

66 0.4067 2440 1391 ° 0.7265 87.6

68 03746

2248 128.1 0.7813 85.7

The variation in the magnitude of P, with the trial angle is shown plotted in Fig. 8.19;
the maximum value is the critical value: P, =89.0 kN/m and critical angle 6 =62°.

6O
Y.
64
66
56

‘Wedge angle

Fig. 8.19

+ %
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(a) Drained conditions (¢'=0)
Referrmg again to Fig. 8.17, a general solution can be obtained for the

maximum active thrust in a form using an earth pressure coefficient (K,).
From the geometry of the force polygon:

_ Wsin(@—¢)
~ sinf(@—0)+(0—¢"]
and
W= %y. sin(o + B)-E-R= iyH? x F{a, B, 6}

After substituting for W, differentiating and putting 6P/00=0, the maximum
value can be written:

1
| | _ '
P,=4yH*>—— ! _ [8.21]
|
|

<2 n.
where K, = . Sin(a + ¢').c08 0 . [8.22]

sin d°sin(a - 5)[1 + \/sin(cj)’ +o)sin(@’ B)]z
| sin(o. — 8)-sin(a + f)

)
K,

Thrust component normal to the wall, P,y =4yH? —

= P,°cos 0 [8.23)
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Method of slices for slope stability analysis —

LTS RE M W B 2R 71

l——-rsina—-_

Figure 9.5 The method of slices. = —

2N AFA %

L
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XTr=XWrsina Swedlsh slice method (Fi#2&27E)
Now Fellenius (1927)

;
T=7m1=Ff1

2 2] EEI’J 1’Eﬁﬁ 71X\ E,

%I=EWsina

Yrel
- F = - y
YXWsina |

For an effective stress analysis (in terms of tangent parameters ¢’ and ¢'):

[ 1
i 5 S+ tang)l :
1T YWsina :
A S )
or
¢L, +tan ¢ SN’ |
F = .
YWsin o (9.32)

,A, 't LRI
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The Bishop routine.solution

In this solution it is assumed that the resultant forces on the sides of the slices are
horizontal, i.e.

|y ";"3": Blshop S s1mp11ﬁed method (1] ’f*h—[—‘ By ey )
1 I — A2 = I |
L e e o o e o J

For equilibrium the shear force on the base of any slice is
l ! ! AN
Tzﬁ(Cl‘i’*N tanqb)

Resolving forces in the vertical direction:

. - /] N .
-W=N'cosa-!—u[cosa-l-c?sina—!——tanqﬁ’sina

. F
(W — (I/F)sina —~ ulcosa]

SN = , . - (9.
[cosa + (tan ¢’ sina) /F] .(9 6)
It is convenient to substitute
| =bseca
From Equation 9.3(a), after some rearrangement,
T " . H
I 1 sec o 1 | #
F — e ’b (W —ub)t § ‘ . D2
| EWsmaZ[{c 4 ) amqﬁ}l—I—(tanozt.';lnqb’/l*") : - ®.7) e, N



A brief introduction to the history of slope
stability analysis methods (Bromhead, 1985)

“* Bishop’s paper was presented at a conference a year
before it appeared in print (1955, Geotechnique).

‘*Separate researches led Janbu and Kenney to the same
result (Kenney working under Bishop at Imperial College)
*» Janbu published first, in 1955, but in an incorrect form,
and Kenney’s thesis appeared the following year.

¢ Subsequently, Janbu republished a corrected form of the
equations, but in a form relatively inaccessible to English
readers.

¢ In the meantime, Bishop had persuaded Price, who had
been one of the authors of the first stability analysis
computer program (see Little & Price, 1958), to try to
program Kenney’s equations for non-circular slips. #

V= af
A
+ o
e
u
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¢ It was then found that the basic equations cold give rise
to numerical problems when evaluated to high precision
that would not appear at slide-rule accuracy

¢ Price and Morgenstern (Morgenstern and Price, 1965,
1967) then developed a more sophisticated method (again at
Imperial College)

**This time, they were secure in the knowledge that
complexity in computation was no longer a bar to
widespread use of a method because of the growing
availability of computers.

*+ Janbu developed his method further, and published his
generalized procedure of slices in 1973, and a number of

other methods also appeared in print throughout the late
1960s and 1970s.  JEH KA

 BRAELJE B - 80 E A AEINZE K B = 3 1A] R Morgenstern #(#%
BRI BR S AT AT, B M TR 2 TR #
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1.9.2 Stress field (characteristic line) ) method (. /]3%
BB L)

* This approach assumes a soil 1s at point of failure

* A solution 1s obtained meeting the Mohr-Coulomb failure,
stress equilibrium, boundary conditions

e The solution 1s NOT a lower bound solution because
only a partial stress field 1s considered (or in equilibrium),
not the whole mass.

« Examples :
-——-Earth pressures obtained by Sokolovski (1960, 1965)
----Rankine active and passive stress fields (= /] 1RIE O

BHE) " z 4 3




gives the following:
- Equilibrium equations:

ao'x N a‘l'xy

>
%, - ’
A ) i
at,, oo,
o+ =y
0x oy -
Mohr-Coulomb failure criterion
(from Figure 1.12): X
oy --"'0'35_ =2c'cos@’ + (o] + o}) sing’ | * \{ /03'
(1.16) | T-*\““ o
. Vv ':".1"‘r Gl!
Noting that: | |
s=cleotg” + )j(0y +03) Figure 1.12: Mohr’s circle of
=c'cotyp' + Y (o, + o-y’) stress

) 2 2 10.5
t=Y(oy-o;)=[)(c,/-0,) +1,]
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and substituting in Equation (1. 16), gives the following alternative equations for
the Mohr-Coulomb criterion:

t =ssing’ (1)

[V (o, —0,) +1,]"" = [c'cotp’ + }4 (0, +0,)] sin¢’ (1.18)

The equilibrium Equations (1.15) and the failure criterion (1.18) provide three
equations in terms of three unknowns. It is therefore theoretically possible to obtain
a solution. Combining the above equations gives:

(1+sing’ 00529)% + sing@’ sin29%‘§- + 25 sinq)'(cos262—9 — sin26 -'2—6) =0
ly X
(1.19)
sing' sin29—g£—+ (1-sing’ 00528)—25- + 25 singo’(sin292—ﬁ + cos29-‘3—3) =y

These two partial differential equations can be shown to be of the hyperbolic
type. A solution is obtained by considering the characteristic directions and
obtaining equations for the stress variation along these characteristics (Atkinson
and Potts (1975)). The differential equations of the stress characteristics are:
FAE
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-g-xl’- = tan[0=(n/4- ¢’ /2)]

p (1.20)
Eﬂ‘:" = tan[0+(n /4~ ¢'/2)]
Along these characteristics the following equations hold: __
 ds —2stang/d6 = y(dy— tang’ dx
s —2s tang y(dy — tang' dx) (121)

ds + 2s tang' d@ = y(dy +tang’ dx)

Equations (1.20) and (1.21) provide four differential equations with four
unknowns x, y, s, and @ which, in principle, can be solved mathematically.
However, to date, it has only been possible to obtain analytical solutions for very
simple problems and/or if the soil is assumed to be weightless, y=0. Generally, they
are solved numerically by adopting a finite difference approximation.

Solutions based on the above equations usually only provide a partial stress
field which does not cover the whole soil mass, but is restricted to the zone of
interest. In general, they are therefore not Lower bound solutions (see Section

1.9.3).
T AL
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1.9.3 Limit analysis (upper bound and lower bound

analysis)

The upper/lower bound theorems of limit analysis are
based on the following assumptions:

(a) Soils behavior is perfect/ideal plastic (B8 %8 1%)
(b) Yield surface is convex in shape (/&£ ik [f]) and
plastic strains follow an associative flow rule
(normality) (FH<BERIIR 3= N)

(c) Changes 1n geometry of soil mass at failure are
insignificant

Upper bound (unsafe) solution _|[R ##
Lower bound (safe) solution T PRA#
The true solution in between

Iﬁﬁk‘%

o f
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Unsafe theorem Upper bound: REAEHK

An unsafe solution to the true collapse loads (for the ideal plastic material) can
be found by selecting any kinematically possible failure mechanism and
performing an appropriate work rate calculation. The loads so determined are
either on the unsafe side or equal to the true collapse loads.

This theorem is often referred to as the ‘Upper bound’ theorem. As equilibrium
is not considered, there is an infinite number of solutions which can be found. The
accuracy of the solution depends on how close the assumed failure mechanism is
to the real one.

Safe theorem Lower bound: N /TIRSAEL K

If a statically admissible stress field covering the whole soil mass can be found,
which nowhere violates the yield condition, then the loads in equilibrium with
the stress field are on the safe side or equal to the true collapse loads.

"This theorem is often referred to as the ‘Lower bound’ theorem. A statically
admissible stress field consists of an equilibrium distribution of stress which
balances the applied loads and body forces. As compatibility is not considered,
there is an infinite number of solutions. The accuracy of the solution depends on

how close the assumed stress field is to the real one.
N7 NANJING UNIVERSITY



Example: Critical height of a vertical cut in undrained clay
Unsafe solution (Upper bound)

'y

Thin plastic
shear zone

Rigid

Yield condition 1=,

Figure 1.173: Failure mechanism for
unsafe analysis

Rigid block ‘abc’ moves with respect to the rigid base along the thin plastic shear
zone ‘ac’, Figure 1.13. The relative displacement between the two rigid blocks is
u. Internal rate of energy dissipation is:

=uS, H/cosf (1.22)

i BRTY 9" 5
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Rate of work done by external forces is:

= Y H® uyysinf (1.23)
Equating equations (1.22) and (1.23) gives:
H =4S, /(ysin2f) (1.24)

Because this is an unsafe estimate, the value of # which produces the smallest value
of H is required. Therefore:

OH _  8S, cos2f

6 y sin*2
Equation (1.25) equals zero if cos2f=0. Therefore f=n/4 which, when substituted
in Equation (1.24), gives:

(1.25)

| Hyg = 4S8,/ y i (1.26)

The same with LEM ! .
M5 — 7 T B LE M ARt R s F4 &
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Safe solution (Lower bound)

Stress discontinuities are assumed along lines ab and ac in Figure 1.14. From the
Mohr’s circles, see Figure 1.14, the stresses in regions 1 and 2 approach yield
simultaneously as H is increased. As this is a safe solution, the maximum value of
H 1srequired. This occurs when the Mohr’s circles for zones 1 and 2 just reach the
yield condition. Therefore:

[ e e e -1
1 —
ILHLB =25,/7] (1.27)
""""" . yH =2§,
A .
x Mohr's circle for Mohr's circle
‘ | o= zone 1, at depth for zone 2
7 S B /
y { /
H -  [¢—oc=0
| >
' ® 7}1 o
a_ _ b .
@ cy:Y(y'H) I G,=Yy o @ _ . .
l I Point circle
for zone 3
o~y-H)—| [« | - [—o=(-H)
A I _
| " . |
Yield condition 7=S, Figure 1.74: Stress field for safe

solution



7EIX— i L
M PR 1 A 2= PR =2 x T PR A%
AR DR B BB, T R AR TRF

T
A
X N Mohr's circle for Mohr's circle
‘ - o,=yy zone 1, ?t depth H for zom}: 2
y $
H -  |¢— o =0
T | ] >
@ Tﬂ c
a_ _ _ _ - b /
@ Gy:Y@'H) I S,=Yy o @ . - {
l I Point circle
for zone 3
o~y(-H) = [&— | — [ o=v(-H)
£ o _
c ' R
Yield condition 1=, Figure 1.14: Stress field for safe
solution
‘{_J_ﬂ; f] RAE Nt s e A

we A
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1.9.4 Comments

* None of the above methods satisfy all basic
requirements.

* All methods are approximate.

* There are different solutions to the same problem.

* Solutions are for soil mass at failure only (limit).

* No displacements are obtained under working load.

* The methods are simple and provide useful solutions to
stability problems (slopes, footings, etc.).
* A lot of experiences have been accumulated.

NEEEE
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1.10 Numerical analysis (ZU{H 53 1T)
1.10.1 Beam-spring approach (G IR ZET%)
For soil-structural interaction:

Soils are simplified as un-connected springs (linear or
non-linear).

Only a single structure 1s considered (a single pile or
wall).

Structural supports (props, anchors etc) are represented
by springs.

Limits (cut-offs) on the springs may be imposed. The
limits are determined separately.

Analytical and/or numerical solutions are obtained.
Examples: Winkler’s solution, FREW, etc

AT !
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Props/anchors
represented by
springs

/A

Soil represented by
springs/interaction
factors

/A

Soil represented by
springs/interaction
factors

Figure 1.15: Examples of beam-spring problems

Winkler model SCRMHEhHLEARA (FLAl T

i
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1.10.2 Full numerical analysis (58 & ZU{E 531T)

For full soil (+structural interaction) analysis:

All basic requirements are satisfied.
Limit loads and displacements are obtained.

Examples: Finite element method (FEM), Finite
difference methods (FDM), Boundary element method
(BEM), and other methods;

§ ¢$fk§
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Software:
FEM: SIGMA/W, SEEP/W, Plaxis, ABAQUS,

ANSYS....
FDM: FLAC?P and FLAC3P

MPM: Anura3D

@l GeoStudio EFLILIE

One Model. One Tool. Many Analyses. m”’m"’”

NANSYS
- Jr' _' _'-',.

@ P L A x I S essential for geotechnical professionals

>

Anura3D =

MPM Research Community

SOILVISIOn
SYSTEMS

Fx &
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2.1
2.2

2.3

3.1
3.2

Table 1.1: Basic solution requirements satisfied by the various
methods of analysis

S - Satisfied; NS - Not Satisfied

=|&%
METHOD OF Z:H/_J'\'ﬁ: SOLUTION REQUIREMENTS
ANALYSIS
= Boundary
£ = conditions
= = I
5 E
= £ Constitutive Force | Disp
=5 & behaviour
Closed form S S Lifear elastic S S
Limit igid with a fatlur
equilibrium S @ criterion S @
Rigid with a failure
Stress field S @ criterion S @
@ Lower
'E -E' bound S @ Ideal plasticity with S @
= s Upper associated flow rule
bound @ S ( NS ) S
Beam-Spring
approaches S S S S
Full Numerical
analysis S S Any S S

+ %

JNIVERSITY



2.1
2.2

2.3

3.1
3.2

Table 7.2 Design requirerments satisfied by the various methods of

analysis
— S50
Z:Eh«xl DESIGN REQUIREMENTS
Wal & Adjacent
Stability supports structures
METHOD OF [ T T I
ANALYSIS = =
2 = 2 | = 2
« [~
] —_— S T o) b4
2E| =2 T |[Ey | £ |, =
= e 2 2 = = 2 = 2 2
= 5| & S (& | & |55 | &
Closed form
(Linear elastic) | WNo No Yes Yes Yes Yes
2 2
- - ] — <~ —
Lamit 28 |E3
equilibrium Yes P S A 8 Yes <No AN O No
Z >z
5= |38
(&) <>
Stress field Yes c}?Tg 25 E Yes a:No> @o ) '@
I a Py
. Lower §_§ § = -é: E
.. '@ |bound Yes 2 S 2's o B (No \No \INO
E 'S 2 2 s |
- s - =8 =
Upper =B SE |SE |2E |
bound Yes 2 8 2T S @ S % (No) (No
Beam-Spring
approaches Yes No No Yes Yes 151_\10 > INO
Full Numerical
analysis Yes Yes Yes Yes Yes Yes Yes

T
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1.11 Summary

1. Geotechnical engineering plays a major role in the design of nearly all civil
engineering structures. |

2. Design of geotechnical structures should consider:
- Stability: local and overall;
- Structural forces: bending moments, axial and shear forces in
structural members; |
- Movements of the geotechnical structure and adjacent ground;
- Movements and structural forces induced in adjacent structures
- and/or services.
3. For a complete theoretical solution the following four conditions should be

satisfied:

Equilibrium;

Compatibility;

Material constitutive behaviour;

Boundary conditions.

4, It is not possible to obtain closed form analytical solutions incorporating
realistic constitutive models of soil behaviour which satisfy all four
fundamental requirements.
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5. The analytical solutions available (e.g. Limit equilibrium, Stress fields and
Limit analysis) fail to satisfy at least one of the fundamental requirements. This
explains why there is an abundance of different solutions in the literature for
the same problem. These simple approaches also only give information on
stability. They do not provide information on movements or structural forces
under working load conditions.

6. Simple numerical methods, such as the beam-spring approach, can provide
information on local stability and on wall movements and structural forces
under working load conditions. They are therefore an improvement over the
simpler analytical methods. However, they do not provide information on
overall stability or on movements in the adjacent soil and the effects on
adjacent structures or services.

7. Full numerical analysis can provide information on all design requirements. A
single analysis can be used to simulate the complete construction history of the
retaining structure. In many respects they provide the ultimate method of
analysis, satisfying all the fundamental requirements. However, they require
large amounts of computing resources and an experienced operator. They are
becoming widely used for the analysis of geotechnical structures and this trend
is likely to increase as the cost of computing continues to decrease.
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