【论文】基于分布式声波传感阵列的地震动事件定位可行性研究

作者:刘威1,朱鸿鹄1,2,3,张汉羽4,王涛1,3,于大勇1, 李杰1,施斌1

1. 南京大学地球科学与工程学院,江苏 南京 210023
2.南京大学(苏州)高新技术研究院,江苏 苏州 210023
3.南京大学大地探测与感知研究院,江苏 南京 210023
4.中国科学院深海科学与工程学院,海南 三亚 572000

中南大学学报(自然科学版) 2023年54卷第5期 页码:1804-1813
DOI:10.11817/j.issn.1672-7207.2023.05.015 中图分类号:P62
纸质出版日期:2023-05-26,收稿日期:2022-05-14,修回日期:2022-07-26

摘要:与传统的密集地震台阵监测技术相比,分布式光纤声波传感(Distributed acoustic sensing,简称DAS)具有空间采样密度高、监测环境适应性强、测量范围广和后期维护成本低等优点。因此DAS 技术在地震探测方面有望逐步取代地震仪,但由于两者在探测方式和测量参数等方面存在诸多差异,常规地震数据处理方法难以直接移植。本文基于在云南省宾川县开展的现场试验,探究了频率-波数分析技术应用于DAS数据处理的可行性,分析了该技术在判断地震动事件所在方向的应用效果。分析结果表明,DAS 阵列的方向偏差为2.37度,相较于检波器阵列,其判断精确度更高。在此基础上,探讨了频率-波数分析法的偏差来源,并提出了减小定位误差、提高分辨能力的三项措施,为在大地探测与感知领域推广应用DAS 技术提供了参考依据。

关键词:分布式声波传感(DAS);地球物理探测;分布式光纤传感(DFOS);地震动事件定位

Feasibility study of seismic events positioning based on distributed acoustic sensing array

LIU Wei1, ZHU Honghu1,2,3, ZHANG Hanyu4, WANG Tao1,3, YU Dayong1, LI Jie1, SHI Bin1

1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China
3. Institute of Earth Exploration and Sensing, Nanjing University, Nanjing 210023,
China
4. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

Abstract: Compared with traditional dense seismic array technology, distributed acoustic sensing (DAS) has the advantages of high spatial sampling density, strong environmental adaptability, wide measurement range and low maintenance cost, etc. Therefore, DAS is expected to gradually replace seismometers in seismic detection. However, due to the many differences in detection between the two technologies, it is difficult for conventional seismic data processing methods to directly process DAS data. Based on the field test carried out in Binchuan county, Yunnan province, this paper explores the feasibility of using F-K analysis method to process DAS data, and analyzes the application effect in judging the direction of seismic events. The result shows that the direction deviation of the DAS array is 2.37 degrees. Compared with the dense seismic array, DAS has higher judgment accuracy. On this basis, this paper discusses the source of deviation in positioning using F-K analysis method, and proposes three methods to reduce the positioning error and improve the positioning resolution capability, which provides a reference for the popularization and application of DAS in the field of earth exploration and sensing.

Key words: distributed acoustic sensing (DAS); geophysical exploration; distributed fiber optic sensing (DFOS); positioning of seismic events

密集地震台阵监测技术因其记录的资料丰富、信噪比高,在地震震源定位、近地表结构成像及地球深部结构探测等领域扮演着重要角色[1-3]。但由于密集地震台阵的部署和维护成本很高,因此,该技术通常只用于短期探测。近年来,蓬勃发展的分布式光纤声波传感(distributed acoustic sensing,DAS)技术为长时间、高密度的地震监测提供了新的技术方法。该技术以传感光缆为探测元件,通过解调沿光缆背向传播的瑞利散射光,实现光缆沿线动态应变(震动、声波)的长距离、分布式、实时定量监测[4]。与传统的节点式地震仪相比,传感光缆价格低廉、体积小、后期维护成本低,并且具有极强的环境适应性(如抗电磁干扰、耐腐蚀、防水等)[5-7],因此,可以部署于海底[8-9]、冰川[10-11]等传统地震仪无法大规模布设的恶劣场景中。此外,DAS还具有长距离、密集空间采样的优势,即它能将1根数十公里的光缆变成一连串以一定间距排列的“地震仪”,其空间分辨率可根据需要在数米至数十厘米之间调整。DAS自20世纪90年代问世以来广受关注,并在VSP采集、天然地震观测、近地表结构探测等领域得到成功应用[12-15]。若将地震仪替换为DAS阵列,则可以捕获更加丰富的波场记录。然而,DAS和传统地震仪在测量参数、响应频带、仪器敏感度、方向敏感性等方面存在着较大差异,一些传统的地震数据处理方法难以直接用于处理DAS数据。这成为DAS应用于地球物理探测的一个巨大障碍。

作为一种地震数据处理技术,频率-波数分析(F-K分析)通过对各地震仪记录的震动数据进行聚束(beam forming)处理,能准确、快速地获得震动波的背方位角和慢度,进而较准确地判断出地震动事件所处的方位。这种数据处理技术为DAS应用于地震动事件定位提供了可能。近年来,基于DAS的震动事件定位研究逐渐受到研究者的关注[16-17]。LIANG等[16]利用开展的小型模型试验,成功定位多个具有相同频率的窄带信号源,展示出DAS震动事件定位的能力,但由于其试验的尺度较小,工况较为简单,因此,定位的效果还需在复杂的工况下通过大型现场试验来进一步验证。本文基于在云南省宾川县开展的DAS现场试验,探究频率-波数分析技术应用于DAS阵列数据处理的可行性,通过对比DAS阵列和附近检波器阵列的聚束结果,验证DAS F-K分析技术的应用可行性,并提出减小聚束定位误差的几种思路。

基本原理及方法

1.1 DAS原理

DAS是一种利用相干瑞利散射光的相位信息测量应变率(应变)的技术,它由解调仪和传感光纤2部分组成。解调仪不断地向连接的光纤发射激光脉冲,由于光纤内部存在不均匀的散射体,部分入射的脉冲光会发生散射。其中,沿光纤背向传播的瑞利散射光是DAS测量的基础。当光纤某个位置受外界扰动而产生应变时,该处光纤的折射率会发生改变,导致背向瑞利散射光的相位也会发生改变。解调仪通过分析光纤各个位置背向瑞利散射光的相位信息,得到应变率(应变)信息,其传感原理如图1所示。

图1  DAS技术的传感原理图

Fig. 1  Basic principle of DAS

1.2 F-K分析技术原理

F-K分析是一种地震阵列处理技术,常被用于估算地震波入射阵列的方向(背方位角)[18-19]。由于各监测台站的空间位置不一(图2(a)),因此,当地震波到达阵列时,各监测台站记录的地震波到达时间会不同,即波形记录之间存在时移(图2(b))。这种时移与地震波在台站下方传播的慢度矢量(速度矢量的倒数)和台站间的位移矢量密切相关。 F-K分析技术通过设定不同的地震波入射方向及传播速度,利用已知的台站空间间距计算时移,然后,对各监测台站的波形记录进行时移叠加(图 2(c)),最后,基于叠加后的能量估算地震波入射阵列的方向和在阵列中的传播速度。

图2  F-K分析原理图

Fig. 2  Basic principle of F-K analysis

(a) 地震波以一定夹角入射监测阵列;(b) 各监测台站原始的波形记录;(c) 经过时移后各监测台站的波形记录

 
 

……

结论

1) DAS阵列以及检波器阵列均能很好地捕获地震波场信息。尽管单道DAS记录受到缆-土耦合等多方面因素的影响,其数据质量不如检波器记录,但由于DAS能在空间上密集采样,因此,可以叠加多道邻近的DAS记录来提升数据质量。此外,DAS阵列捕获的地震波场信息较检波器阵列而言更为丰富,其F-K分析产生的误差也更小。

2) 缆-土之间的耦合效果和阵列的几何布设形态是导致本试验聚束产生偏差的重要因素,光纤的方向敏感性也对聚束偏差有一定影响。

3) 使用特殊设计的光缆来提升应变的传递效率、使用锚固点来增强缆-土之间耦合效果、改变DAS阵列的几何形态来捕获多方向的震动信息等措施可减小聚束偏差。

4) 需要指出的是,单个DAS阵列捕获的波形记录只能大致判断出地震动事件所在的方向,如要定位地震动事件,还需结合其他DAS阵列的波形记录,通过进行F-K分析获得多组方向信息,进而判断出地震动事件的平面位置。

参考文献

[1] 朱子杰, 王绪本, 刘志强, 等. 基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性[J]. 地球物理学报, 2021, 64(3): 823-837.
Zhu Zijie, Wang Xuben, Liu Zhiqiang, et al. Seismic anisotropy in the southeastern margin of the Tibetan Plateau revealed by ambient noise tomography based on high-density array[J]. Chinese Journal of Geophysics, 2021,64(3): 823-837.

[2] 李敏娟, 沈旭章, 张元生, 等. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报, 2018, 61(5): 2075-2087.
Li Minjuan, Shen Xuzhang, Zhang Yuansheng, et al. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics, 2018, 61(5): 2075-2087.

[3] 郝春月, 郑重. 地震台阵监测能力综述[J]. 地震地磁观测与研究, 2020, 41(6): 3-14.
Hao Chunyue, Zheng Zhong. An overview of seismic array monitoring capabilities[J]. Seismological and Geomagnetic Observation and Research, 2020,41(6):3-14.

[4] 蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报,2018, 36(1): 41-58.
Cai Haiwen, Ye Qing, Wang Zhaoyong, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1): 41-58.

[5] 崔允亮, 王新, 周联英, 等. 基于光纤监测的大直径变截面钢管复合桩承载性状[J].中南大学学报(自然科学版), 2020,51(6):1627-1636.
Cui Yunliang, Wang Xin, Zhou Lianying, et al. Bearing behavior of large-diameter variable cross-section steel composite pile based on optical fiber monitoring[J]. Journal of Central South University(Science and Technology), 2020, 51(6): 1627-1636.

[6] 朱鸿鹄, 朱维申, 殷建华, 等. 地下开挖模型试验的光纤监测[J]. 中国矿业大学学报, 2010, 39(6): 826-830.
Zhu Honghu, Zhu Weisheng, Yin Jianhua, et al. Fiber optic monitoring of an underground excavation model test[J]. Journal of China University of Mining & Technology, 2010, 39(6): 826-830.

[7] 蒋庆, 王强. 基于干涉型分布式光纤技术的水下管道泄漏检测实验分析[J]. 中南大学学报(自然科学版), 2012, 43(2): 576-580.
Jiang Qin, Wang Qiang. Underwater gas pipeline leakage and location simulation in lab-scale based on optical fiber interferometer.[J]. Journal of Central South University(Science and Technology), 2012, 43(2): 576-580.

[8] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 2019, 366(6469): 1103-1107.

[9] Sladen A, Rivet D, Ampuero J P, et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables[J]. Nature Communications, 2019, 10(1): 1-8.

[10] Walter F, Graeff D, Lindner F, et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 2020, 11(1): 1-10.

[11] Booth A D, Christoffersen P, Schoonman C, et al. Distributed acoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier[J]. Geophysical Research Letters, 2020, 47(13): 1-10.

[12] 李彦鹏, 李飞, 李建国, 等. DAS技术在井中地震勘探的应用[J]. 石油物探, 2020, 59(2): 242-249.
Li Yanpeng, Li Fei, Li Jianguo, et al. Application of distributed acoustic sensing in borehole seismic exploration[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 242-249.

[13] Lindsey N J, Martin E R, Dreger D S, et al. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 2017, 44(23): 11792-11799.

[14] 林融冰, 曾祥方, 宋政宏, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅱ:背景噪声成像[J]. 地球物理学报, 2020, 63(4): 1622-1629.
Lin Rongbin, Zeng Xiangfang, Song Zhenhong, et al. Distributed acoustic sensing for imaging shallow structure II: Ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(4): 1622-1629.

[15] 施斌, 王宝善, 张诚成, 等. 川西甲基卡锂矿3 211 m科学深钻多物理量分布式光纤观测[J]. 科学通报, 2022, 67(23): 2719-2726.
SHI Bin, WANG Baoshan, ZHANG Chengcheng, et al. Multi-physical distributed fiber optic observation in a 3 211 m-deep scientific borehole at Jiajika lithium mine, western Sichuan[J]. Chinese Science Bulletin, 2022, 67(23): 2719-2726.

[16] Liang J J, Wang Z Y, Lu B, et al. Distributed acoustic sensing for 2D and 3D acoustic source localization[J]. Optics Letters, 2019, 44(7): 1690-1693.

[17] Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing: a new tool for seismic applications[J]. First Break, 2014, 32(2): 61-69.

[18] Rost S. Array seismology: Methods and applications[J]. Reviews of Geophysics, 2002, 40(3). 2-1-2-27

[19] 莫璧铭, 李剑, 孔慧华, 等. 基于FK能量聚束的传感器阵列优化布设方法[J]. 计算机测量与控制, 2019, 27(10): 285-288+293.
Mo Biming, Li jian, Kong Huihua, et al. Optimization method of shock sensor array layouts based on FK beamforming[J]. Computer Measurement & Control, 2019, 27(10): 285-288+293.

[20] 沈旭章, 梅秀苹, 张淑珍, 等. 兰州台阵响应函数及不同方位小地震事件FK分析结果[J]. 西北地震学报, 2010, 32(1): 59-64.
Shen Xuzhang, Mei Xiupin, Zhang, Shuzhen, et al. The array response function of Lanzhou seismic array and results of FK analysis for small earthquakes in different azimuths[J].Northwestern Seismological Journal, 2010, 32(1): 59-64.

[21] 周鹏敏, 薛鹏, 范柱国, 等. 云南省宾川县地质灾害发育特征及形成条件[J]. 安徽农业科学, 2016, 44(1): 190-192+240.
Zhou Pengmin, Xue Peng, Fang Zhuguo, et al, Geological hazards characteristics and formation conditions in Binchuan county, Yunnan province[J]. Journal of Anhui Agricultural Sciences, 2016, 44(1): 190-192+240.

[22] 范昆琨, 范柱国, 肖彬, 等. 宾川县地质灾害特征及防治措施[J]. 中国水土保持, 2011(3): 17-19.
Fan Kunkun, Fan Zhuguo, Xiao Bin, et al. Characteristics and countermeasures for prevention and control of geological disasters of Binchuan county[J]. Soil and Water Conservation in China, 2011(3): 17-19.

[23] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.
Shi Bin, Zhang Dan, Zhu Honghu. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019.

[24] 程刚, 施斌, 朱鸿鹄, 等. 光纤和砂土界面耦合性能的分布式感测试验研究[J]. 高校地质学报, 2019, 25(4): 487-494.
Chen Gang, Shi Bin, Zhu Honghu, et al. Experimental study on coupling performance of fiber and sand interface based on distributed sensing[J]. Geological Journal of China Universities, 2019, 25(4): 487-494.

[25] Zhu H H, Ho A N L, Yin J H, et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope[J]. Smart Structures and Systems, 2012, 9(5): 393-410.

[26] 李孝宾, 宋政宏, 杨军, 等. 利用分布式光纤声波传感器监测大容量气枪震源信号[J]. 地震地质, 2020, 42(5): 1255-1265.
Li Xiaobin, Song Zhenghong, Yang Jun, et al. Monitoring signal of air gun source with distributed acoustic sensing[J]. Seismology and Geology, 2020, 42(5): 1255-1265.

[27] 陈颙, 王宝善, 姚华建. 大陆地壳结构的气枪震源探测及其应用[J]. 中国科学:地球科学, 2017, 47(10): 1153-1165.
Chen Yong, Wang Baoshan, Yao Huajian. Seismic airgun exploration of continental crust structures[J]. Scientia Sinica(Terrae) , 2017, 47(10): 1153-1165.

[28] 杨微, 王宝善, 王伟涛, 等. 陆地水体气枪震源重复性的影响因素及控制方法[J]. 华南地震, 2020, 40(4): 1-9.
Yang Wei, Wang Baoshan, Wang Weitao, et al. Influence factors and control methods for the repeatability of air gun source in land reservoirs[J]. South China Journal of Seismology, 2020, 40(4): 1-9.

[29] 陈颙, 张先康, 丘学林, 等. 陆地人工激发地震波的一种新方法[J]. 科学通报, 2007(11): 1317-1321.
Chen Yong, Zhang Xiankang, Qiu Xuelin, et al. A new way to generate seismic waves for continental crustal exploration[J] Chinese Science Bulletin, 2007(11): 1317-1321.

[30] 王宝善, 曾祥方, 宋政宏, 等. 利用城市通信光缆进行地震观测和地下结构探测[J]. 科学通报, 2021, 66(20): 2590-2595.
Wang Baoshan, Zeng Xiangfang, Song Zhenghong, et al. Seismic observation and subsurface imaging using a urban telecommunication optic-fiber cable[J]. Chinese Science Bulletin, 2021, 66(20): 2590-2595.

[31] 魏芸芸, 王海涛, 苏金波, 等. 新疆2次中强地震前气枪震源反射波震相走时异常变化初步研究[J]. 中国地震, 2016, 32(2): 270-281.
Wei Yunyun, Wang Haitao, Su Jingbo, et al. The preliminary study on travel time abnormal variation of reflection wave phase of air-gun in Xinjiang before two earthquakes with Ms5.0[J]. Earthquake Research in China, 2016, 32(2): 270-281.

[32] Zhu H H, She J K, Zhang C C, et al. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 2015, 73: 284-294.

[33] 张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959-1967.
Zhang Chengcheng, Shi Bin, Liu Suping, et al. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967.

[34] Zhang C C, Zhu H H, Liu S P, et al. Quantifying progressive failure of micro-anchored fiber optic cable-sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 2020, 57(6): 871-902.

[35] Zhan Z. Distributed Acoustic Sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 2020, 91(1): 1-15.

[36] 施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25(3): 582-591.
Shi Bin. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 2017, 25(3): 582-591.

[37] 佘骏宽, 朱鸿鹄, 张诚成, 等. 传感光纤-砂土界面力学性质的试验研究[J]. 工程地质学报, 2014, 22(5): 855-860.
She Junkuan, Zhu Honghu, Zhang Chengcheng, et al. Experiment study on mechanical properties of interface between sensing optical fiber and sand[J]. Journal of Engineering Geology, 2014, 22(5): 855-860.

[38] Kuvshinov B N. Interaction of helically wound fibre-optic cables with plane seismic waves[J]. Geophysical Prospecting, 2016, 64(3): 671-688.

[39] Ning I L C, Sava P. High-resolution multi-component distributed acoustic sensing[J]. Geophysical Prospecting, 2018, 66(6): 1111-1122.