【论文】基于多级阈值分割算法的MICP固化砂土结构定量表征

【研究背景】

土壤结构对于环境和生态系统的健康至关重要。然而,微生物诱导碳酸盐沉淀(MICP)对土壤结构的影响尚未被完全理解。MICP是一种通过微生物作用来固化土体的方法,但是如何量化土体结构的变化仍然是一个难题。

【研究内容】

南京大学的科研人员近期在国际期刊《Journal of Rock Mechanics and Geotechnical Engineering》上发表了一篇题为“Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm”的论文。该文使用一种名为GAE-KE的多级阈值分割算法,对使用MICP方法固化的砂土结构进行了定量表征。结合同步辐射(SR)微CT扫描技术,研究人员成功地将砂土试样中的沉淀碳酸钙晶体与砂粒和孔隙分离开来。他们计算了孔隙度、孔隙结构参数和流动特性的空间分布,从而量化了MICP固化效果的孔隙尺度洞察,并证实了GAE-KE多级阈值分割算法的可行性。

【研究意义】

这项研究为我们提供了一种量化土体结构变化的新方法,同时也为MICP研究提供了新的思路。通过对土体结构的定量表征,我们可以更好地了解MICP方法对土体结构的固化效应,为土体保护和治理提供更科学的依据。此外,GAE-KE多级阈值分割算法的应用也为其他领域的图像分割问题提供了新的解决思路。

Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm

作者: Jianjun, Zi, Tao, Liu, Wei, Zhang, Pan, Xiaohua, Hu, Ji, Zhu, Honghu

机构: 南京大学

DOI:10.1016/j.jrmge.2023.11.025

【Abstract】The influences of biological, chemical, and flow processes on soil structure through microbial-induced carbonate precipitation (MICP) are not yet fully understood. In this study, we use a multi-level thresholding segmentation algorithm, genetic algorithm (GA) enhanced Kapur entropy (KE) (GAE-KE), to accomplish quantitative characterization of sandy soil structure altered by MICP cementation. A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation (SR) micro-CT with a resolution of 6.5 μm. After validation, tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores. The spatial distributions of porosity, pore structure parameters, and flow characteristics were calculated for quantitative characterization. The results offer pore-scale insights into the MICP treatment effect, and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.

【Keywords】Soil structure; Micro-CT; Multi-level thresholding; MICP; Genetic algorithm (GA)

References

Abera, K.A., Manahiloh, K.N., Motalleb Nejad, M., 2017. The effectiveness of global thresholding techniques in segmenting two-phase porous media. Constr. Build. Mater. 142, 256-267.

Ahenkorah, I., Rahman, M.M., Karim, M.R., Beecham, S., 2023. Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting-drying, freezing-thawing and elevated temperature: experimental and EPR modelling. J. Rock Mech. Geotech. Eng. 15 (5), 1226-1247.

Alidoustsalimi, N., Bazargan, M., Ghobadi Nejad, Z., Yaghmaei, S., 2022. Construction of porous calcite structure using microbially induced calcite precipitation. J. Pet. Sci. Eng. 217, 110797.

An, R., Kong, L.W., Zhang, X.W., Li, C.S., 2022. Effects of dry-wet cycles on threedimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography. J. Rock Mech. Geotech. Eng. 14 (3), 851-860.

Bardhan, A., Kardani, N., Alzo’Ubi, A.K., Roy, B., Samui, P., Gandomi, A.H., 2022. Novel integration of extreme learning machine and improved Harris Hawks Optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter. J. Rock Mech. Geotech. Eng. 14 (5), 1588-1608.

Bhandari, A.K., Kumar, A., Chaudhary, S., Singh, G.K., 2016. A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst. Appl. 63 (C), 112-133.

Charalampos, K., Giovanna, B., Jiang, N.J., Kenichi, S., 2021. Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. J. Rock Mech. Geotech. Eng. 13 (3), 579-592.

Cnudde, V., Boone, M.N., 2013. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1-17.

Dagliya, M., Satyam, N., Sharma, M., Garg, A., 2022. Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. J. Rock Mech. Geotech. Eng. 14 (5), 1556-1567.

Di Remigio, G., Rocchi, I., Zania, V., 2021. Scanning electron microscopy and clay geomaterials: from sample preparation to fabric orientation quantification. Appl. Clay Sci. 214, 106249.

Etchepareborda, P., Bianchetti, A., Vadnjal, A.L., Federico, A., 2019. Evaluation of structural similarity quality measures for wrapped recovered phase maps in optical metrology. Opt Laser. Eng. 116, 103-110.

Fu, T., Saracho, A.C., Haigh, S.K., 2023. Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review. Biogeotechnics 1 (1), 100002.
Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing, third ed. Pearson Prentice Hall, Upper Saddle River, USA.

Gowthaman, S., Kumari Nawarathna, T.H., Nayanthara, P.G.N., Nakashima, K., Kawasaki, S., 2021. The amendments in typical microbial induced soil stabilization by low-grade chemicals, biopolymers and other additives: a review. In: Achal, V., Chin, C.S. (Eds.), Building Materials for Sustainable and Ecological Environment. Springer, Singapore, pp. 49-72.

Huang, H., Shen, J., Chen, Q., Karakus, M., 2020. Estimation of REV for fractured rock masses based on geological strength index. Int. J. Rock Mech. Min. Sci. 126, 104179.

Hwang, H., Park, B., Chung, M., 2023. Comparison of microbial reduction effect of intense pulsed light according to growth stage and population density of Escherichia Coli ATCC 25922 using a double Weibull model. Food Res. Int. 164, 112353.

Iamchaturapatr, J., Piriyakul, K., Ketklin, T., Di Emidio, G., Petcherdchoo, A., Colangelo, F., 2021. Sandy soil improvement using MICP-based urease enzymatic acceleration method monitored by real-time system. Adv. Mater. Sci. Eng., 6905802, 2021.

Iamchaturapatr, J., Piriyakul, K., Petcherdchoo, A., 2022a. Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers. Case Stud. Constr. Mater. 16, e871.

Iamchaturapatr, J., Piriyakul, K., Petcherdchoo, A., 2022b. Use of a piezoelectric bender element for the determination of initial and final setting times of metakaolin geopolymer pastes, with applications to laterite soils. Sensors 22 (3), 1267.

Jiang, N.J., Tang, C.S., Hata, T., Courcelles, B., Dawoud, O., Singh, D.N., 2020. Biomediated soil improvement: the way forward. Soil Use Manag. 36 (2), 185-188.

Kotzem, D., Arold, T., Bleicher, K., Raveendran, R., Niendorf, T., Walther, F., 2023. Ti6Al4V lattice structures manufactured by electron beam powder bed fusion e microstructural and mechanical characterization based on advanced in situ techniques. J. Mater. Res. Technol. 22, 2111e2130.

Li, Z., Liu, D., Cai, Y., Ranjith, P.G., Yao, Y., 2017. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray m-CT. Fuel 209, 43-53.

Liao, K., Zhang, W., Zhu, H.H., Shi, B., Wang, J.T., Xu, W.T., 2022. Forecasting reservoir-induced landslide deformation using genetic algorithm enhanced multivariate Taylor series Kalman filter. Bull. Eng. Geol. Environ. 81, 104.

Lim, A., Atmaja, P.C., Rustiani, S., 2020. Bio-mediated soil improvement of loose sand with fungus. J. Rock Mech. Geotech. Eng. 12 (1), 180-187.

Linden, J.H., Narsilio, G.A., Tordesillas, A., 2021. Thermal conductance network model for computerised tomography images of real dry geomaterials. Comput. Geotech. 136, 104093.

Liu, B., Tang, C.S., Pan, X.H., Zhu, C., Cheng, Y.J., Xu, J.J., Shi, B., 2021. Potential drought mitigation through microbial induced calcite precipitation e MICP. Water Resour. Res. 57 (9), e2020WR029434.

Liu, B., Zhu, C., Tang, C.S., Xie, Y.H., Yin, L.Y., Cheng, Q., Shi, B., 2020. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264, 105389.

Liu, Q., Sun, M., Sun, X., et al., 2023. Pore network characterization of shale reservoirs through state-of-the-art X-Ray computed tomography: a review. Gas Sci. Eng. 113, 204967.

Liu, Y., Zhang, W., Liang, X.L., Xu, L., Tang, X.Y., 2019. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure. Rock Soil Mech. 40 (7), 2723e2729 (in Chinese).

Lu, T., Wei, Z., Wang, W., Yang, Y., Cao, G., Wang, Y., Liao, H., 2021. Experimental investigation of sample preparation and grouting technology on microbially reinforced tailings. Constr. Build. Mater. 312, 125458.

Ma, G., Yue, X., 2022. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method. Eng. Appl. Artif. Intell. 113, 104960.

Moslemipour, A., Sadeghnejad, S., 2021. Dual-scale pore network reconstruction of vugular carbonates using multi-scale imaging techniques. Adv. Water Resour. 147, 103795.

Mwandira, W., Nakashima, K., Kawasaki, S., 2017. Bioremediation of leadcontaminated mine waste by Pararhodobacter Sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 109, 57e64.

Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., Li, H., 2020. Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecol. Eng. 153, 105885.

Pare, S., Kumar, A., Bajaj, V., Singh, G.K., 2016. A multilevel color image segmentation technique based on Cuckoo search algorithm and energy curve. Appl. Soft Comput. 47, 76e102.

Pessoa, T.N., Cooper, M., Nunes, M.R., Uteau, D., Peth, S., Vaz, C.M.P., Libardi, P.L., 2022. 2D and 3D techniques to assess the structure and porosity of Oxisols and their correlations with other soil properties. Catena 210, 105899.

Pires, L.F., Auler, A.C., Roque, W.L., Mooney, S.J., 2020. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 362, 114103.
Piriyakul, K., Iamchaturapatr, J., 2013. Biocementation through microbial calcium carbonate precipitation. J. Ind. Technol. 9 (3), 195e218.

Rochet, A., Suzana, A.F., Passos, A.R., et al., 2019. In situ reactor to image catalysts at work in three-dimensions by bragg coherent X-ray diffraction. Catal. Today 336,
169e173.

Sandeep, C.S., Hernandez, A., Stangeland, K., Evans, T.M., 2023. Shape characteristics of granular materials through realistic particle avatars. Comput. Geotech. 157, 105352.

Sharma, M., Satyam, N., Reddy, K.R., 2020. Strength enhancement and lead immobilization of sand using consortia of bacteria and blue-green algae. J. Hazard. Toxic Radioact. Waste 24 (4), 04020049.

Sharma, M., Satyam, N., Reddy, K.R., 2021. Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. J. Rock Mech. Geotech. Eng. 13 (3), 705e716.

Sharma, M., Satyam, N., Reddy, K.R., 2022a. Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation. Eng. Geol. 302, 106635.

Sharma, M., Satyam, N., Reddy, K.R., 2022b. Liquefaction resistance of biotreated sand before and after exposing to weathering conditions. Indian Geotech. J. 52 (2), 328e340.

Sharma, M., Satyam, N., Reddy, K.R., Chrysochoou, M., 2022c. Multiple heavy metal immobilization and strength improvement of contaminated soil using biomediated calcite precipitation technique. Environ. Sci. Pollut. Res. 29, 51827-51846.

Shashank, B.S., Sharma, S., Sowmya, S., Latha, R.A., Meenu, P.S., Singh, D.N., 2016. State-of-the-art on geotechnical engineering perspective on bio-mediated processes. Environ. Earth Sci. 75 (3), 270.

Simatupang, M., Okamura, M., Hayashi, K., Yasuhara, H., 2018. Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation. Soil Dynam. Earthq. Eng. 115, 710e718.

Soda, P.R.K., Chakravarthi, E.K., Mogal, A., Mini, K.M., 2022. Statistical and experimental investigation on self-healing of microcracks in cement mortar by encapsulation of calcite precipitating bacteria into expanded perlite. Constr. Build. Mater. 342, 127985.

Sun, Q., Zheng, J., Li, C., 2019. Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images. Powder Technol. 356, 295e303.

Tang, C.S., Lin, L., Cheng, Q., Zhu, C., Wang, D.W., Lin, Z.Y., Shi, B., 2020b. Quantification and characterizing of soil microstructure features by image processing technique. Comput. Geotech. 128, 103817.

Tang, C.S., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., Shi, B., 2020a. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil:
a review. Environ. Earth Sci. 79 (5), 94.

Taylor, H.F., O Sullivan, C., Sim, W.W., 2015. A new method to identify void constrictions in micro-CT images of sand. Comput. Geotech. 69, 279e290.

Treebupachatsakul, T., Kamchoom, V., 2021. Permeability and setting time of biomediated soil under various medium concentrations. J. Rock Mech. Geotech. Eng. 13 (2), 401e409.

Van Paassen, L.A., 2009. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation. PhD Thesis. Delft University of Technology, Delft, Netherlands.

Voltolini, M., Tas¸ , N., Wang, S., Brodie, E.L., Ajo-Franklin, J.B., 2017. Quantitative characterization of soil micro-aggregates: new opportunities from sub-micron resolution synchrotron X-ray microtomography. Geoderma 305, 382e393.

Wang, D., Tang, C.S., Pan, X.,Wang, R., Li, J., Dong, Z., Shi, B., 2022a. Construction and demolition waste stabilization through a bio-carbonation of reactive magnesia cement for underwater engineering. Construct. Build. Mater. 335, 127458.

Wang, X., Li, C., He, J., 2022b. A highly effective strain screened from soil and applied in cementing fine sand based on MICP-bonding technology. J. Biotechnol. 350, 55e66.

Wang, Y., Ren, Y., Zhou, G., Du, G.H., Xie, H.L., Deng, B., Xiao, T.Q., 2018. Equally sloped tomography based X-ray full-field nano-CT at Shanghai synchrotron radiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 896, 108e112.

Wu, H.R., Wu, W., Liang, W., Dai, F., Liu, H., Xiao, Y., 2022. 3D DEM modeling of
biocemented sand with fines as cementing agents. Int. J. Numer. Anal. Methods GeoMech. 47 (2), 212e240.

Wu, P., Li, Y., Sun, X., Liu, W., Song, Y., 2020. Pore-scale 3D morphological modeling and physical characterization of hydrate-bearing sediment based on computed tomography. J. Geophys. Res. Solid Earth 125 (12), e2020JB020570.

Wu, S.C., Xiao, T.Q., Withers, P.J., 2017. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Eng. Fract. Mech. 182, 127-156.

Wu, Y., Meng, T., Wu, S., 2015. Research progress of image thresholding methods in recent 20 years (1994e2014). J. Data Acquis. Process. 30 (1), 1e23.

Xiao, Y., Xiao, W., Wu, H.R., Zhao, H., Liu, H., 2023. Particle size effect on unconfined compressive strength of biotreated sand. Transp. Geotech. 42, 101092.

Xiao, Y., Zhao, C., Sun, Y., Wang, S., Wu, H.R., Chen, H., Liu, H., 2021. Compression behavior of MICP-treated sand with various gradations. Acta Geotech 16 (5), 1391e1400.

Xiong, Q., Li, K., Yang, D., Yu, H., Pan, Z., Song, Y., 2020. Characterizing coal pore space by gas adsorption, mercury intrusion, FibeSEM and m-CT. Environ. Earth Sci. 79 (10), 209.

Xu, H., Zheng, H., Wang, J., Ding, X., Chen, P., 2019. Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly
ash. MethodsX 6, 1036-1043.

Zamani, A., Xiao, P., Baumer, T., Carey, T.J., Sawyer, B., Dejong, J.T., Boulanger, R.W., 2021. Mitigation of liquefaction triggering and foundation settlement by MICP treatment. J. Geotech. Geoenviron. Eng. 147 (10), 04021099.

Zeng, H., Yin, L., Tang, C.S., et al., 2021. Tensile behavior of bio-cemented, fiber reinforced calcareous sand from coastal zone. Eng. Geol. 294, 106390.

Zhang, N., Hedayat, A., Han, S., Yang, R., Sosa, H.G.B., Cárdenas, J.J.G., Álvarez, G.E.S., 2021. Isotropic compression behavior of granular assembly with non-spherical
particles by X-ray micro-computed tomography and discrete element
modeling. J. Rock Mech. Geotech. Eng. 13 (5), 972e984.

Zhang, N.F., Zhang, W., Liao, K., Zhu, H.H., Li, Q., Wang, J.T., 2022. Deformation
prediction of reservoir landslides based on a Bayesian optimized random forest combined
Kalman filter. Environ. Earth Sci. 81, 197.

Zhang, P., Lee, Y.I., Zhang, J., 2019a. A review of high-resolution X-ray computed
tomography applied to petroleum geology and a case study. Micron 124, 102702.

Zhang, W., Xiao, R., Shi, B., Zhu, H., Sun, Y., 2019b. Forecasting slope deformation
field using correlated grey model updated with time correction factor and background value optimization. Eng. Geol. 260, 105215.

Zheng, J., Hryciw, R.D., 2016. Segmentation of contacting soil particles in images by
modified watershed analysis. Comput. Geotech. 73, 142e152.

Zhou, B., Ku, Q., Wang, H., Wang, J.F., 2020. Particle classification and intra-particle
pore structure of carbonate sands. Eng. Geol. 279, 105889.

Zhou, B., Zhang, X., Wang, J., Wang, H.B., Shen, J.W., 2023. Insight into the mechanism
of microbially induced carbonate precipitation treatment of bio-improved calcareous sand particles. Acta Geotech 18 (2), 985e999.