本文总结了光纤传感技术在岩土工程监测中的应用现状,介绍了常用光纤传感技术的基本工作原理及其优缺点,分析了目前光纤传感器的研发情况,对光纤传感技术及相关传感器在桩基、边坡、隧道、大坝、基坑、近海、管道等岩土工程监测中的应用成果进行了全面的总结和回顾。最后,展望了光纤传感技术在岩土工程监测中面临的挑战与未来的发展方向。
岩土工程受到施工及服役复杂环境的影响,存在许多不确定性,工程事故易发,给岩土工程监测带来了重大挑战。传统传感器由于其固有的局限性,已逐渐无法满足监测的需求。光纤传感技术具有抗电磁干扰、灵敏度高、信号远程传输稳定等诸多优势,被广泛应用于岩土工程监测领域。本文从光纤传感技术的基本原理、相关传感器的研发及其在岩土工程监测中的应用现状进行了全面的总结和讨论,以期为后续相关研究工作和工程监测提供一定的参考和借鉴。
图1 主要内容框架图
本文将常用的光纤传感技术分为准分布式(FBG)和全分布式(BOTDR、BOTDA、BOFDA等)两种,分别介绍了上述光纤传感技术的基本工作原理及其优缺点,并对基于光纤传感技术的多种准分布式传感器和全分布式感测光缆的基本结构、封装方法以及适用环境进行了总结。
图2 FBG和BOTDR传感技术工作原理图
图3 常用感测光缆结构图
在此基础上,对光纤传感技术在桩基工程、边坡工程、隧道工程、大坝工程、基坑工程、近海工程、管道工程中的应用现状和具体监测方法进行了回顾。在桩基工程中,根据成桩方式的不同,介绍了预制桩和灌注桩应变、位移等物理量的监测方法;在边坡工程中,总结了边坡土钉应变和边坡位移的监测方法;在隧道工程中,分析了隧道围岩位移和隧道施工引起的地面沉降的监测方法;在大坝工程中,归纳了大坝位移和大坝渗漏的监测方法;在基坑工程中,介绍了基坑支护结构和锚杆内力的监测方法;在近海工程中,总结了钢筋腐蚀的监测方法;在管道工程中,讨论了管道变形和管周土体位移的监测方法。
图4 光纤传感技术在桩基工程中的应用
图5 光纤传感技术在边坡工程中的应用
图6 光纤传感技术在隧道工程中的应用
图7 光纤传感技术在大坝和基坑工程中的应用
图8 光纤传感技术在近海和管道工程中的应用
本文综述了光纤传感技术在岩土监测中的应用现状,重点介绍了光纤传感技术的工作原理、新传感器的开发以及在不同岩土工程中的监测方法,所得结论如下:
(1)基于光纤传感技术的传感器具有重量轻、灵敏度高、监测距离长、实时监测等诸多优点,能够满足岩土工程日益增长的监测需求,具有替代传统传感器的潜力。
(2)光纤传感技术及相关传感器种类繁多,各具优缺点,在实际工程监测中,应根据岩土工程的实际情况,选择合适的传感技术、传感器及相应的安装工艺、监测方法。
(3)为了准确地评估岩土工程的安全状况,应将实测数据与数值模拟、理论计算结果进行对比和分析,加强监测数据准确性的验证,进一步优化监测数据处理方法。
(4)在后续的研究中,应继续优化传感器的封装工艺,开发更多性能优异的传感器;探索新的传感器安装工艺,提高传感器和被测结构的耦合性能;进一步改进解调技术,以获得更高的监测精度和分辨率。
来源:Rock Mechanics Bulletin, 2023, 2, 100021.
作者:Jiaxiao Ma, Huafu Pei, Honghu Zhu, Bin Shi, Jianhua Yin
单位:大连理工大学, 南京大学, 香港理工大学
A review of previous studies on the applications of fiber optic sensing technologies in geotechnical monitoring
References
Amatya, B., Soga, K., Uchimura, T., et al., 2008. Installation of optical fibre strain sensors on soil nails used for stabilising a steep highway cut slope. Proc. Adv. Transport. Geotech. 2008, 277–282. https://doi.org/10.1201/9780203885949.pt3.
Artieres, O., Dortland, G., 2010. A fiber optics textile composite sensor for geotechnical applications. Proc. SPIE-Int. Soc. Opt. Eng. https://doi.org/10.1117/12.865454.
Aufleger, M., Conrad, M., Goltz, M., et al., 2007. Innovative dam monitoring tools based on distributed temperature measurement. Jordan J. Civ. Eng. 1 (1), 29–37.
Bai, X.Y., Liu, X.Y., Zhang, M.Y., et al., 2020. Stress transfer properties and displacement difference of GFRP antifloating anchor. Adv. Civ. Eng. 2020 (4), 1–18. https://doi.org/10.1155/2020/8894720.
Baldwin, C., Poloso, T., Chen, P.C., et al., 2001. Structural monitoring of composite marine piles using fiber optic sensors. Proc. SPIE-Int. Soc. Opt. Eng. 2001, 487–497. https://doi.org/10.1117/12.434149.
Bhalla, S., Yang, Y.W., Zhao, J., et al., 2005. Structural health monitoring of underground facilities-Technological issues and challenges. Tunn. Undergr. Space Technol. 20 (5), 487–500. https://doi.org/10.1016/j.tust.2005.03.003.
Bourne-Webb, P., Amatya, B., Soga, K., et al., 2009. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique 59 (3), 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Caid, S., Tang, H., Guo, Y.S., 2013. Distributed optical fiber in high RCC arch dam project. Appl. Mech. Mater. 312 (2013), 639–643. https://doi.org/10.4028/www.scientific.net/AMM.312.639.
Chen, Y., Tang, F., Tang, Y., et al., 2017. Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures. Corrosion Sci. 127, 70–81. https://doi.org/10.1016/j.corsci.2017.08.021.
Cheung, L., Soga, K., Bennett, P.J., et al., 2010. Optical fibre strain measurement for tunnel lining monitoring. P. I. Civ. Eng-Geotec. 163 (3), 119–130. https://doi.org/10.1680/geng.2010.163.3.119.
Chiang, C.C., Hu, C.H., Ou, C.H., 2013. pH value detection with CLPFG sensor. Appl. Mech. Mater. 284–287, 2157–2161. https://doi.org/10.4028/www.scientific.net/AMM.284-287.2157.
Ding, Y., Wang, P., Yu, S., 2015. A new method for deformation monitoring on H-pile in SMW based on BOTDA. Measurement 70, 156–168. https://doi.org/10.1016/j.measurement.2015.02.027.
Doherty, P., Igoe, D., Murphy, G., et al., 2015. Field validation of fibre Bragg grating sensors for measuring strain on driven steel piles. G_eotech. Lett. 5 (2), 74–79. https://doi.org/10.1680/geolett.14.00120.
Fuhr, P.L., Huston, D.R., 1998. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors. Smart Mater. Struct. 7 (2), 217–228. https://doi.org/10.1088/0964-1726/7/2/009.
Gao, J., Wu, J., Li, J., et al., 2011. Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDT Int. 44 (2), 202–205. https://doi.org/10.1016/j.ndteint.2010.11.011.
Gao, L., Ji, B.Q., Kong, G.Q., et al., 2015. Distributed measurement of temperature for PCC energy pile using BOFDA. J. Sens. 2015, 1–6. https://doi.org/10.1155/2015/610473.
Glisic, B., 2014. Sensing Solutions for Assessing and Monitoring Pipeline Systems, Sensor Technologies for Civil Infrastructures, vol. 2014. Woodhead Publishing, Sawston, UK, pp. 422–460. https://doi.org/10.1016/B978-0-08-102706-6.00014-3.
Gue, C., Wilcock, M., Alhaddad, M., et al., 2015. The monitoring of an existing cast iron tunnel with distributed fibre optic sensing (DFOS). J. Civ. Struct. Health. 5 (5), 573–586. https://doi.org/10.1007/s13349-015-0109-8.
Guo, X.X., Wang, B., Ma, Z.W., et al., 2019. Testing mechanical properties of rock bolt under different supports using fiber Bragg grating technology. Sensors 19 (19), 4098. https://doi.org/10.3390/s19194098.
Han, S.M., Benaroya, H., Wei, T., 1999. Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225 (5), 935–988. https://doi.org/10.1006/jsvi.1999.2257.
Henault, J.M., Moreau, G., Blairon, S., et al., 2010. Truly distributed optical fiber sensors for structural health monitoring: from the telecommunication optical fiber drawling tower to water leakage detection in dikes and concrete structure strain monitoring. Adv. Civ. Eng. 2010, 930796. https://doi.org/10.1155/2010/930796.
Hill, K.O., Fujii, F., Johnson, D.C., et al., 1978. Photosensitivity on optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32 (10), 647–649. https://doi.org/10.1063/1.89881.
Ho, Y.T., Huang, A.B., Lee, J.T., 2006. Development of a fiber Bragg grating sensored ground movement monitoring system. Meas. Sci. Technol. 17 (7), 1733–1740. https://doi.org/10.1088/0957-0233/17/7/011.
Hong, C.Y., Yin, J.H., Jin, W., et al., 2010. Comparative study on the elongation measurement of a soil nail using optical lower coherence interferometry method and FBG method. Adv. Struct. Eng. 13 (2), 309–320. https://doi.org/10.1260/1369-4332.13.2.309.
Horiguchi, T., Tateda, M., 1989. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol. 7 (8), 1170–1176. https://doi.org/10.1109/50.32378.
Huang, X.D., Wang, Y., Sun, Y.Y., et al., 2018. Research on horizontal displacement monitoring of deep soil based on a distributed optical fibre sensor. J. Mod. Opt. 65, 158–165. https://doi.org/10.1080/09500340.2017.1382594.
Khan, A.A., Vrabie, V., Mars, J.I., et al., 2010. Automatic monitoring system for singularity detection in dikes by DTS data measurement. IEEE Trans. Instrum. Meas. 59 (8), 2167–2175. https://doi.org/10.1109/TIM.2009.2032880.
Kister, G., Winter, D., Gebremichael, Y., et al., 2007. Methodology and integrity monitoring of foundation concrete piles using Bragg grating optical fibre sensors. Eng. Struct. 29 (9), 2048–2055. https://doi.org/10.1016/j.engstruct.2006.10.021.
Klar, A., Linker, R., 2009. Feasibility study of the automated detection and localization of underground tunnel excavation using Brillouin optical time domain reflectometer. Proc. SPIE-Int. Soc. Opt. Eng. 2009, 731603–731612. https://doi.org/10.1117/12.810781.
Klar, A., Bennett, P.J., Soga, K., et al., 2006. Distributed strain measurement for pile foundations. P. I. Civ. Eng. Geotech. 159 (3), 135–144. https://doi.org/10.1680/geng.2006.159.3.135.
Kong, X., Cai, C., Hou, S., 2013. Scour effect on a single pile and development of corresponding scour monitoring methods. Smart Mater. Struct. 22 (5), 055011. https://doi.org/10.1088/0964-1726/22/5/055011.
Kou, H.L., Guo, W., Zhang, M.Y., 2015. Pullout performance of GFRP anti-floating anchor in weathered soil. Tunn. Undergr. Space Technol. 49, 408–416. https://doi.org/10.1016/j.tust.2015.06.001.
Kronenberg, P., Casanova, N., Inaudi, D., et al., 1997. Dam monitoring with fiber optics deformation sensors. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3043. https://doi.org/10.1117/12.274637.
Lee, W.J., Lee, S.B., Salgado, R., 2004. Measurement of pile load transfer using the fiber Bragg crating sensor system. Can. Geotech. J. 41 (6), 1222–1232. https://doi.org/10.1139/t04-059.
Leung, C.K.L., Wan, K.T., Inaudi, D., et al., 2015. Review: optical fiber sensors for civil engineering applications. Mater. Struct. 48 (4), 871–906. https://doi.org/10.1617/s11527-013-0201-7.
Li, X., Prinz, F., 2003. Metal embedded fiber bragg grating sensors in layered manufacturing. J. Manuf. Sci. Eng. 125 (3), 577–585. https://doi.org/10.1115/1.1581889.
Li, C., Zhao, Y.G., Liu, H., et al., 2010. Combined interrogation using an encapsulated FBG sensor and a distributed Brillouin tight buffered fibre sensor in a tunnel. Struct. Health Monit. 9 (4), 341–346. https://doi.org/10.1177/1475921710361321.
Li, Y.R., Liang, Y., Wei, X., et al., 2012. Study on lateral dynamic response of pile foundation in liquefiable soil by using FBG method. Appl. Mech. Mater. 238, 337–340. https://doi.org/10.4028/www.scientific.net/AMM.238.337.
Li, G.W., Hong, C.Y., Dai, J., et al., 2013. FBG-based creep analysis of GFRP materials embedded in concrete. Math. Probl Eng. 2013, 1–9. https://doi.org/10.1155/2013/631216.
Li, G.W., Pei, H.F., Yin, J.H., et al., 2014. Monitoring and analysis of PHC pipe piles under hydraulic jacking using FBG sensing technology. Measurement 49, 358–367. https://doi.org/10.1016/j.measurement.2013.11.046.
Li, H.J., Zhu, H.H., Li, Y.H., et al., 2022a. Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves. J. Rock. Mech. Geotech. 14 (4), 1304–1318. https://doi.org/10.1016/j.jrmge.2022.04.009.
Li, H.J., Zhu, H.H., Wu, H.Y., et al., 2022b. Experimental investigation on pipe-soil interaction due to ground subsidence via high-resolution fiber optic sensing. Tunn. Undergr. Space Technol. 127, 104586. https://doi.org/10.1016/j.tust.2022.104586.
Linker, R., KlaA, 2015. Detection of sinkhole formation by strain profile measurements using BOTDR: simulation study. J. Eng. Mech. 143 (3), B4015002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000963.
Linker, R., Klar, A., 2013. Detection and sensing of mines. Explos. Obj. Obscur. Targets XVIII 8709, 87090X. https://doi.org/10.1117/12.2536812.
Liu, H., 2003. Pipeline Engineering. Lewis Publishers, Boca Raton, FL, USA.
Liu, J.W., Zhang, M.Y., 2012. Measurement of residual force locked in open-ended pipe pile using FBG-based sensors. Electron. J. Geotech. Eng. 17, 2145–2154.
Lu, Y., Shi, B., Wei, G., et al., 2012. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles. Smart Mater. Struct. 21, 115011. https://doi.org/10.1088/0964-1726/21/11/115011.
Lv, H., Zhao, X., Zhan, Y., et al., 2017. Damage evaluation of concrete based on Brillouin corrosion expansion sensor. Construct. Build. Mater. 143 (15), 387–394. https://doi.org/10.1016/j.conbuildmat.2017.03.122.
MacPherson, W.N., Silva-Lopez, M., Barton, J.S., et al., 2006. Tunnel monitoring using multicore fiber displacement sensor. Meas. Sci. Technol. 17, 1180–1185. https://doi.org/10.1088/0957-0233/17/5/S41.
Meltz, G., Morey, W.W., Glenn, W.H., 1989. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14 (15), 823–825. https://doi.org/10.1364/ol.14.000823.
Metje, N., Chapman, D.N., Rogers, C.D.F., et al., 2006. Optical fibre sensors for remote monitoring of tunnel displacements-Prototype tests in the laboratory. Tunn. Undergr. Space Technol. 21 (3), 417. https://doi.org/10.1016/j.tust.2005.12.062.
Minardo, A., Picarelli, L., Avolio, B., et al., 2014. Fiber optic based inclinometer for remote monitoring of landslides: on site comparison with traditional inclinometers. In: 2014 IEEE Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS.2014.6947382.
Moffat, R., Sotomayor, J., Beltran, J.F., et al., 2015. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus. Int. J. Rock. Mech. Min. 75, 233–243. https://doi.org/10.1016/j.ijrmms.2014.10.013.
Mohamad, H., Bennett, P., Soga, K., et al., 2010. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement. Geotechnique 60 (12), 927–938. https://doi.org/10.1680/geot.8.P.074.
Mohamad, H., Soga, K., Pellew, A., et al., 2011a. Performance monitoring of a secant piled wall using distributed fiber optic strain sensing. J. Geotech. Geoenviron. 137(12), 1236–1243. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000543.
Mohamad, H., Soga, K., et al., 2011b. Performance monitoring of a secant-piled wall using distributed fiber optic strain sensing. J. Geotech. Geoenviron. 137, 1236–1243. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000543.
Mohamad, H., Soga, K., BennettP, J., et al., 2012. Monitoring twin tunnel interaction using distributed optical fiber strain measurements. J. Geotech. Geoenviron. 138 (8), 957–967. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000656.
Mou, C., Saffari, P., Li, D., et al., 2009. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation. Meas. Sci. Technol. 20 (2009), 034013. https://doi.org/10.1088/0957-0233/20/3/034013.
Nan, S., Gao, Q., 2011. Application of distributed optical fiber sensor technology based on BOTDR in similar model test of backfill mining. Proc. Earth Planet. Sci. 2, 34–39. https://doi.org/10.1016/j.proeps.2011.09.006.
Naruse, H., Komatsu, K., Fujihashi, K., et al., 2005. Telecommunications tunnel monitoring system based on distributed optical fiber strain measurement. Proc. SPIE Int. Soc. Opt. Eng. 5855. https://doi.org/10.1117/12.623645.
Ni, P., Moore, I.D., Take, W.A., 2018. Distributed fibre optic sensing of strains on buried full-scale PVC pipelines crossing a normal fault. Geotechnique 68 (1), 1–17. https://doi.org/10.1680/jgeot.16.P.161.
Nishio, M., Mizutania, T., Takedaa, N., 2007. Structural shape identification using distributed strain data from PPP-BOTDA. Proc. SPIE 6530 (1). https://doi.org/10.1117/12.715342, 65301J-65301J-9.
Pei, H.F., Yin, J.H., Zhu, H.H., et al., 2010. In-situ monitoring of displacements and stability evaluation of slope based on fiber Bragg grating sensing technology. Chin. J. Rock Mech. Eng. 29 (8), 1570–1576. http://hdl.handle.net/10397/22610.
Pei, H.F., Yin, J.H., Zhu, H.H., et al., 2012a. Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in place inclinometers. Meas. Sci. Technol. 23 (2), 025007. https://doi.org/10.1088/0957-0233/23/2/025007.
Pei, H.F., Yin, J.H., Zhu, H.H., et al., 2012b. Performance monitoring of a glass fiber reinforced polymer bar soil nail during laboratory pullout test using FBG sensing technology. Int. J. GeoMech. 13 (4), 467–472. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000226.
Pei, H.F., Jun, T., Yin, J.H., et al., 2014. A review of previous studies on the applications of optical fiber sensors in geotechnical health monitoring. Measurement 58, 207–214. https://doi.org/10.1016/j.measurement.2014.08.013.
Pei, H.F., Zhang, S.Q., Borana, L., et al., 2019a. Slope stability analysis based on real-time displacement measurements. Measurement 131. https://doi.org/10.1016/j.measurement.2018.09.019, 696-693.
Pei, H.F., Yin, J.H., WangZ, T., 2019b. Monitoring and analysis of cast-in-place concrete bored piles adjacent to deep excavation by using BOTDA sensing technology. J. Mod. Opt. 66 (12), 703–709. https://doi.org/10.1080/09500340.2018.1559948.
Pei, H.F., Jing, J.H., Zhang, S.Q., 2020. Experimental study on a new FBG-based and Terfenol-D inclinometer for slope displacement monitoring. Measurement 151, 107172. https://doi.org/10.1016/j.measurement.2019.107172.
Pei, H.F., Zhang, F., Zhang, S.Q., 2021. Development of a novel Hall element inclinometer for slope displacement monitoring. Measurement 181, 109636. https://doi.org/10.1016/j.measurement.2021.109636.
Qi, J.Q., Wang, B.J., Wang, X., et al., 2019. Application of optical-fiber sensing to concrete support and continuous wall strain monitoring. J. Geotech. Geoenviron. 349 (1), 012032. https://doi.org/10.1088/1755-1315/349/1/012032.
Ren, B.K., Zhu, H.H., Shen, Y., et al., 2021. Deformation monitoring of ultra-deep foundation excavation using distributed fiber optic sensors. IOP Conf. Ser. Earth Environ. Sci. 861 (7), 072057. https://doi.org/10.1088/1755-1315/861/7/072057.
Sang, S., Wang, Y.H., Ma, J.X., et al., 2020. Experimental research based on the optical fiber sensing technology for a jacked phc pipe pile penetration process. Adv. Civ. Eng. 2020, 1–8. https://doi.org/10.1155/2020/8873308.
Sekar, R., Shivananju, B.N., Lakshmi, K.P., et al., 2012. Dual functional performance of fiber Bragg gratings coated with metals using flash evaporation technique. Opt. Fiber Technol. 18 (4), 183–185. https://doi.org/10.1016/j.yofte.2012.04.001.
Soga, K., Luo, L., 2018. Distributed fiber optics sensors for civil engineering infrastructure sensing. J. Struct. Integr. Main. 3 (1), 1–21. https://doi.org/10.1080/24705314.2018.1426138.
Soga, K., Amatya, B., Wright, P., et al., 2010. Optical fibre strain measurement for tunnel lining monitoring. Geotech. Eng. 163 (3), 119–130. https://doi.org/10.1680/geng.2010.163.3.119.
Song, H.B., Pei, H.F., 2022. A nonlinear softening load-transfer approach for the thermomechanical analysis of energy piles. Int. J. GeoMech. 22 (5), 04022044. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002358.
Song, H.B., Pei, H.F., Zhu, H.H., 2021. Monitoring of tunnel excavation based on the fiber Bragg grating sensing technology. Measurement 169, 108334. https://doi.org/10.1016/j.measurement.2020.108334.
Stajanca, P., Chruscicki, S., Homann, T., et al., 2018. Detection of leak-induced pipeline vibrations using fiber-Optic distributed acoustic sensing. Sensors 18 (9), 2841.
https://doi.org/10.3390/s18092841.
Su, H.Z., Hu, J., Yang, M., 2015. Dam seepage monitoring based on distributed optical fiber temperature system. IEEE Sensor. J. 15 (1), 9–13. https://doi.org/10.1109/JSEN.2014.2335197.
Sun, Y.J., Zhang, D., Shi, B., et al., 2014. Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng. Geol. 182 (19), 49–62.
https://doi.org/10.1016/j.enggeo.2014.08.025.
Sun, Y.J., Li, X., Ren, C., et al., 2020. Distributed fiber optic sensing and data processing of axial loaded precast piles. IEEE Access 8, 169136–169145. https://doi.org/10.1109/
ACCESS.2020.3023626.
Vogt, T., SchneiderP, WoernleL, H., et al., 2010. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling.
J. Hydrol. 380 (1–2), 154–164. https://doi.org/10.1016/j.jhydrol.2009.10.033.
Vorster, T.E.B., Soga, K., Mair, R.J., et al., 2006. The use of fibre optic sensors to monitor pipeline response to tunnelling. GeoCongress 2006: Geotech. Eng. Inf. Technol. Age
2006. https://doi.org/10.1061/40803(187)33, 33-33.
Wade, S.A., Wallbrink, C.D., McAdam, G., et al., 2008. A fibre optic corrosion fuse sensor using stressed metal-coated optical fibres. Sensor. Actuat. B-Chem. 131, 602–608.
https://doi.org/10.1016/j.snb.2007.12.056.
Wang, B.J., Li, K., Shi, B., et al., 2009. Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 6 (1), 61–68. https://doi.org/10.1007/s10346-008-0139-y.
Wang, F., Zhang, D.M., Zhu, H.H., et al., 2013. Impact of overhead excavation on an existing shield tunnel: field monitoring and a full 3D finite element analysis. Comput.
Mater. Continua (CMC) 34 (1), 63–81. https://doi.org/10.3970/CMC.2013.034.063.
Wang, Y.L., Shi, B., Zhang, T.L., et al., 2015. Introduction to an FBG based inclinometer and its application to landslide monitoring. J. Civil Struct. Health Monit. 5, 645–653.
https://doi.org/10.1007/s13349-015-0129-4.
Wang, S., Yang, H., Liao, Y., et al., 2016. High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler. IEEE Photon. J. 8 (4), 1–9.
https://doi.org/10.1109/JPHOT.2016.2593586.
Wang, X., Shi, B., Wei, G., et al., 2018. Monitoring the behavior of segment joints in a shield tunnel using distributed fiber optic sensors. Struct. Control Health Monit. 25
(2), e2056. https://doi.org/10.1002/stc.2056.
Wang, J., Zhu, H.H., Mei, G.X., et al., 2021a. Field monitoring of bearing capacity efficiency of permeable pipe pile in clayey soil: a comparative study. Measurement
186, 110151. https://doi.org/10.1016/j.measurement.2021.110151.
Wang, D.Y., Zhu, H.H., WangB, J., Shi, B., 2021b. Performance evaluation of buried pipe under loading using fiber Bragg grating and particle image velocimetry techniques.
Measurement 186, 110086. https://doi.org/10.1016/j.measurement.2021.110086.
Weng, X.L., Chen, J.X., Wang, J., 2014. Fiber Bragg grating-based performance monitoring of piles fiber in a geotechnical centrifugal model test. Adv. Mater. Sci.
Eng. 1, 1–8. https://doi.org/10.1155/2014/659276.
Xu, D.S., Yin, J.H., Cao, Z.Z., et al., 2013b. A new flexible FBG sensing beam for measuring dynamic lateral displacements of soil in a shaking table test. Measurement
46, 200–209. https://doi.org/10.1016/j.measurement.2012.06.007.
Xu, D.S., Xu, X.Y., Li, W., et al., 2020. Field experiments on laterally loaded piles for an offshore wind farm. Mar. Struct. 69, 102684. https://doi.org/10.1016/
j.marstruc.2019.102684.
Yan, K., Yang, J.C., Zhang, Y., et al., 2020. Safety performance monitoring of smart FBG based FRP anchors. Saf. Sci. 128, 104759. https://doi.org/10.1016/j.ssci.2020.104759.
Ye, X., Zhu, H.H., Wang, J., et al., 2022. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system. Geophys. Res. Lett. 49 (11),
e2022GL098211. https://doi.org/10.1029/2022GL098211.
Yoshida, Y., Kashiwai, Y., Murakami, E., et al., 2002. Development of the monitoring system for slope deformations with fiber Bragg grating arrays. Proc. SPIE 4694,
296–303. https://doi.org/10.1117/12.472632.
Zhang, S.Q., Pei, H.F., 2021. Determining bound water content of montmorillonite from molecular simulations. Eng. Geol. 294, 106353. https://doi.org/10.1016/j.enggeo.2021.106353.
Zhang, X., Alemohammad, H., Toyserkani, E., 2013. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings. Meas. Sci. Technol. 24,
025106. https://doi.org/10.1088/0957-0233/24/2/025106.
Zhang, C.C., Zhu, H.H., Xu, Q., et al., 2014. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand. Can. Geotech. J. 52 (6), 1–11.
https://doi.org/10.1016/10.1139/cgj-2013-0381.
Zhang, Y., Zhu, L., Luo, F., et al., 2016. Fabrication and characterization of metalpackaged fiber Bragg grating sensor by one-step ultrasonic welding. Opt. Eng. 55 (6),
067103. https://doi.org/10.1117/1.OE.55.6.067103.
Zhang, C.C., Zhu, H.H., Liu, S.P., et al., 2018. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements. Eng.
Geol. 234, 83–96. https://doi.org/10.1016/j.enggeo.2018.01.002.
Zhang, Z.H., Guan, P., Dong, Y.K., et al., 2021. Analysis of horizontal bearing capacity of offshore pile foundation based on DPP-BOTDA. J. CIV. Struct. Health 12 (2),
232–241. https://doi.org/10.1007/s13349-021-00506-8.
Zheng, Y., Huang, D., Zhu, Z.W., 2018a. Theoretical and experimental study on fiber optic displacement sensor with bowknot bending modulation. Opt. Fiber Technol. 41,
12–20. https://doi.org/10.1016/j.yofte.2017.12.008.
Zheng, Y., Huang, D., Shi, L., 2018b. A new deflection solution and application of a fiber Bragg grating-based inclinometer for monitoring internal displacements in slopes.
Meas. Sci. Technol. 29, 055008. https://doi.org/10.1088/1361-6501/aab13d.
Zheng, Y., Zhu, Z.W., Deng, Q.X., et al., 2019. Theoretical and experimental study on the fiber Bragg grating-based inclinometer for slope displacement monitoring. Opt. Fiber Technol. 49, 28–36. https://doi.org/10.1016/j.yofte.2019.01.031.
Zheng, Y., Zhu, Z.W., Xiao, W., et al., 2020. Review of fiber optic sensors in geotechnical health monitoring. Opt. Fiber Technol. 54, 102127. https://doi.org/10.1016/j.yofte.2019.102127.
Zhou, H., Pan, Z., Liang, Z., et al., 2019. Temperature field reconstruction of concrete dams based on distributed optical fiber monitoring data. KSCE J. Civ. Eng. 23 (8),
1–12. https://doi.org/10.1007/s12205-019-0787-6.
Zhu, H.H., Yin, J.H., Zhang, L., et al., 2010a. Monitoring internal displacements of a model dam using FBG sensing bars. Adv. Struct. Eng. 13 (2), 249–261. https://doi.org/10.1260/1369-4332.13.2.249.
Zhu, H.H., Yin, J.H., Yeung, A.T., et al., 2010b. Field pullout testing and performance evaluation of GFRP soil nails. J. Geotech. Geoenviron. 137 (7), 633–642. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000457.
Zhu, H.H., Ho, A., Yin, J.H., et al., 2012. An optical fibre monitoring system for evaluating the performance of a soil nailed slope. Smart Struct. Syst. 9, 393–410. https://doi.org/10.12989/sss.2012.9.5.393.
Zhu, H.H., She, J.K., Zhang, C.C., et al., 2015. Experimental study on pullout performance of sensing optical fibers in compacted sand. Measurement 73, 284–294. https://doi.org/10.1016/j.measurement.2015.05.027.
Zhu, H.H., Shi, B., Zhang, C.C., 2017. FBG-based monitoring of geohazards: current status and trends. Sensors 17 (3), 452. https://doi.org/10.3390/s17030452.
Zhu, H.H., Garg, A., Yu, X., et al., 2022a. Editorial for Internet of Things (IoT) and artificial intelligence (AI) in geotechnical engineering. J. Rock Mech. Geotech. Eng.
14, 1025e1027. https://doi.org/10.1016/j.jrmge.2022.07.001.
Zhu, H.H., Liu, W., Wang, T., et al., 2022b. Distributed scoustic sensing for monitoring linear infrastructures: current status and trends. Sensors 22, 7550. https://doi.org/10.3390/s22197550.
Zhu, H.H., Wang, D.Y., Shi, B., et al., 2022c. Performance monitoring of a curved shield tunnel during adjacent excavations using a fiber optic nervous sensing system. Tunn.
Undergr. Space Technol. 124, 104483. https://doi.org/10.1016/j.tust.2022.104483.
Zhu, H.H., Liu, W., Wang, T., et al., 2022d. Distributed acoustic sensing for monitoring linear infrastructures: current status and trends. Sensors 22 (19), 7550. https://doi.org/10.3390/s22197550.