【论文】地面塌陷分布式光纤感测模型试验研究

作者:韦超1,朱鸿鹄1,2,高宇新1,王静1,张巍1,施斌1

1南京大学地球科学与工程学院,江苏南京,210023
2南京大学(苏州〉高新技术研究院,江苏苏州,215123

来源:岩土力学, 2022, Vol. 43, Issue (9): 2443-2456.

doi: 10.16285/j.rsm.2021.1992

摘要:突发性地面塌陷对城市安全构成巨大威胁,掌握塌陷土体变形过程对地面塌陷事故的预测预报至关重要。基于分布式光频域反射(optical frequency domain reflectometry,简称 OFDR )和粒子图像测速(particle image velocimetry,简称 PIV)技术,开展了地面塌陷模型试验,研究了塌陷过程中土体沉降的时空分布规律,并探究了不同应变感测光缆锚固方式对光纤监测结果的影响。结果表明:光纤应变监测曲线准确地反映了不同塌陷阶段上覆土体的变形状态,揭示了土体内部应变的演化机制;在光缆上设置圆片锚板,可以有效增强光缆与土体界面的耦合变形程度;在一定的埋置深度下,随着锚板尺寸的增大,光缆与土体间的变形协调性越好。研究结果显示,分布式应变传感技术在地面塌陷变形监测中具有较好的适用性,为该类地质灾害的早期识别提供了一种有力的工具。

关键词: 光纤传感器, 地面塌陷, 沉降监测, 界面效应, 模型试验

Abstract: Ground collapse accidents pose a large threat to the safety of cities due to their suddenness. It is very important to understand the development process of internal deformation of collapsed soil for prediction of ground collapse. In this study, based on the optical frequency domain reflectometry (OFDR) and particle image velocimetry (PIV) technologies, ground collapse model test was performed, and the tempo-spatial distributions of ground settlement in the collapsed area were investigated. The influence of anchoring methods of distributed strain sensing cables on the fiber optic monitoring results was explored. The results show that the fiber optic strain measurements reflect the deformation state of the overlying soil in different collapse stages and reveal the internal strain evolution mechanism of the ground soil. The coupling effect of the cable-soil interface is effectively enhanced by adding circular micro-anchor plates and is better with the increase of the diameter of the anchoring circulars at a certain burial depth. The research results show that the distributed strain sensing technology has good applicability in monitoring ground collapse and can provide a powerful tool for mitigating such geohazards.

Key words: fiber optic sensor, ground collapse, settlement monitoring, interface behavior, model test

参考文献:

[1] 张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309.
ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(Suppl.1): 303-309.

[2] 蒋小珍, 雷明堂, 陈渊, 等.岩溶塌陷的光纤传感监测试验研究[J]. 水文地质工程地质, 2006, 33(6) :75-79.
JIANG Xiao-zhen, LEI Ming-tang, CHEN Yuan, et al. An experiment study of monitoring sinkhole collapse by using BOTDR optical fiber sensing technique[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 75-79.

[3] XIAO X, GUTIERREZ F, GUERRERO J. The impact of groundwater drawdown and vacuum pressure on sinkhole development: physical laboratory models[J]. Engineering Geology, 2020, 279(12): 105894.

[4] 蒙彦, 管振德. 应用光纤传感技术进行岩溶塌陷监测预报的关键问题探讨[J]. 中国岩溶, 2011, 30(2): 187- 192.
MENG Yan, GUAN Zhen-de. A discussion on the key technical problem in monitoring and redicting sinkhole with optical fiber sensing (BOTDR) technique[J]. Carsologica Sinica, 2011, 30(2): 187-192.

[5] RUI R, VAN TOL A F, XIA Y Y, et al. Investigation of soil-arching development in dense sand by 2D model tests[J]. Geotechnical Testing Journal, 2016, 39(3): 415- 430.

[6] CHEN H J, HE J P, XUE Y, et al. Experimental study on sinkhole collapse monitoring based on distributed Brillouin optical fiber sensor[J]. Optik, 2020, 216: 1-10.

[7] 胡静云, 李庶林, 林峰, 等. 特大采空区上覆岩层地压与地表塌陷灾害监测研究[J]. 岩土力学, 2014, 35(4): 1117-1122.
HU Jing-yun, LI Shu-lin, LIN Feng, et al. Research on disaster monitoring of overburden ground pressure and surface subsidence in extra-large mined-out area[J]. Rock and Soil Mechanics, 2014, 35(4): 1117-1122.

[8] LINKER R, KLAR A. Detection of sinkhole formation by strain profile measurements using BOTDR: simulation study[J]. Journal of Engineering Mechanics, 2017, 143(3): B4015002.

[9] 卢毅, 施斌, 于军, 等. 地面变形分布式光纤监测模型试验研究[J]. 工程地质学报, 2015, 23(5): 896-901.
LU Yi, SHI Bin, YU Jun, et al. Model test on distributed optical fiber monitoring of land subsidence and ground fissures[J]. Journal of Engineering Geology, 2015, 23(5): 896-901.

[10] BOOTH A M, LAMB M P, AVOUAC J P, et al. Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France[J]. Geophysical Research Letters, 2013, 40: 4299-4304.

[11] BALDI P, CENNI N, FABRIS M, et al. Kinematics of a landslide derived from archival photogrammetry and GPS data[J]. Geomorphology, 2008, 102(3-4): 435-444.

[12] HE Y, CHEN Y D, WANG W H, et al. TS-InSAR analysis for monitoring ground deformation in Lanzhou new district, the loess Plateau of China, from 2017 to 2019[J]. Advances in Space Research, 2021, 67(4): 1267-1283.

[13] 张严, 朱武, 赵超英, 等. 佛山地铁塌陷InSAR时序监测及机理分析[J]. 工程地质学报, 2021, 29(4): 1167- 1177.
ZHANG Yan, ZHU Wu, ZHAO Chao-ying, et al. Moniting and inversion of Foshan metro collapse with multi- temporal InSAR and field investigation[J]. Journal of Engineering Geology, 2021, 29(4): 1167-1177.

[14] 王启耀, 彭建兵, 蒋臻蔚, 等. 西安典型段地面沉降分层标观测及数值模拟[J]. 岩土力学, 2014, 35(11): 3298- 3302.
WANG Qi-yao, PENG Jian-bing, JIANG Zhen-wei, et al. Numerical simulation and layerwise mark monitoring of land subsidence and ground fissures of typical section in Xi’an[J]. Rock and Soil Mechanics, 2014, 35(11): 3298- 3302.

[15] STARK T D, CHOI H. Slope inclinometers for landslides[J]. Landslides, 2008, 5(3): 339-350.

[16] COROMINAS J, MOYA J, LLORET A, et al. Measurement of landslide displacements using a wire extensometer[J]. Engineering Geology, 2000, 55: 149-166.

[17] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京:科学出版社, 2019: 5-11.
SHI Bin, ZHANG Dan, ZHU Hong-hu. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019: 5-11.

[18] SCHENATO L, PALMIERI L, CAMPORESE M, et al. Distributed optical fibre sensing for early detection of shallow landslides triggering[J]. Scientific Reports, 2017, 7(1): 14686.

[19] ZHANG C C, ZHU H H, LIU S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234: 83-96.

[20] 张诚成, 施斌, 朱鸿鹄, 等. 地面沉降分布式光纤监测土−缆耦合性分析[J]. 岩土工程学报, 2019, 41(9): 1670-1678
ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, et al. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678.

[21] 柴敬, 欧阳一博, 张丁丁, 等. 采场覆岩变形分布式光纤监测岩体-光纤耦合性分析[J]. 采矿与岩层控制工程学报, 2020, 2(3): 73-82.
CHAI Jing, OUYANG Yi-bo, ZHANG Ding-ding, et al. Theoretical analysis of the mechanical coupling between rock and optical fiber for distributed sensing of overlying strata deformation[J]. Journal of Mining and Strata Control Engineering, 2020, 2(3): 73-82.

[22] SUO W B, LU Y, SHI B, et al. Development and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring[J]. Journal of Civil Structural Health Monitoring, 2016, 6(4): 715-724.

[23] 张诚成, 施斌, 朱鸿鹄, 等. 分布式光纤探测地裂缝的理论基础探讨[J]. 工程地质学报, 2019, 27(6): 1473- 1482.
ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, et al. A theoretical framework for detecting and monitoring ground fissures using distributed fiber optic sensing[J]. Journal of Engineering Geology, 2019, 27(6): 1473-1482.

[24] 侯公羽, 胡涛, 李子祥, 等. 基于分布式光纤技术的采动影响下覆岩变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
HOU Gong-yu, HU Tao, LI Zi-xiang, et al. Experimental study on overburden deformation evolution under mining effect based on distributed optical fiber technology[J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.

[25] 程刚, 施斌, 张平松, 等. 采动覆岩变形分布式光纤物理模型试验研究[J]. 工程地质学报, 2017, 25(4): 926- 934.
CHENG Gang, SHI Bin, ZHANG Ping-song, et al. Physical model test study on deformation of overlying strata during coal mining with distributed fiber optic deformation monitoring[J]. Journal of Engineering Geology, 2017, 25(4): 926-934.

[26] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-632.

[27] 崔蓬勃, 朱永全, 刘勇, 等. 非饱和砂土隧道土拱效应模型试验及颗粒流数值模拟研究[J]. 岩土力学, 2021, 42(12): 3451-3466.
CUI Peng-bo, ZHU Yong-quan, LIU Yong, et al. Model test of soil arching effect in unsaturated sand tunnel and particle flow numerical simulation[J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466.

[28] BURKE T, ELSHAFIE M. Arching in granular soils: experimental observations of deformation mechanisms[J]. Géotechnique, 2021, 71: 866-878.

[29] 王德洋, 朱鸿鹄, 吴海颖, 等. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报, 2020, 42(6): 1125-1131.
WANG De-yang, ZHU Hong-hu, WU Hai-ying, et al. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131.

[30] ZHU H H, SHE J K, ZHANG C C, et al. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 2015, 73: 284-294.

[31] ZHANG C C, ZHU H H, LIU S P, et al. Quantifying progressive failure of micro-anchored fiber optic cable–sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 2020, 57: 871-881.

[32] ZHANG C C, SHI B, ZHANG S, et al. Microanchored borehole fiber optics allows strain profiling of the shallow subsurface[J]. Scientific Reports, 2021, 11: 9173.

[33] WU H, ZHU H H, ZHANG C C, et al. Strain integration-based soil shear displacement measurement using high-resolution strain sensing technology[J]. Measurement, 2020, 166: 108210.

[34] DING Z Y, YANG D, DU Y, et al. Distributed strain and temperature discrimination using two types of fiber in OFDR[J]. IEEE Photonics Journal, 2016, 8(5): 1-8.

[35] 中华人民共和国水利部. GB/T 50145-2007 土的工程分类标准[S]. 北京: 中国计划出版社, 2008.
Ministry of Water Resources of the People’s Republic of China. GB/T 50145-2007 standard for engineering classification of soil[S]. Beijing: China Planning Press, 2008.

[36] OU C Y, TENG F C, LI C W. A simplified estimation of excavation-induced ground movements for adjacent building damage potential assessment[J]. Tunnelling and Underground Space Technology, 2020, 106(5): 103561.

[37] 那晓云, 于军, 王宝军. 地基附加应力分布对城市路面塌陷的影响[J]. 公路, 2019, 64(2): 8-12.
NA Xiao-yun, YU Jun, WANG Bao-jun. Effects of additional stress of foundation on urban road collapse[J]. Highway, 2019, 64(2): 8-12.

[38] 王滨, 贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学, 2006, 27(3): 458-462.
WANG Bin, HE Ke-qiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3): 458-462.

[39] BERGADO D T, CHAI J C, MIURA N. Prediction of pullout resistance and pullout force displacement relationship for inextensible grid reinforcements[J]. Soils and Foundations, 1996, 36: 11-22.

[40] KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.