基于主动加热光纤法的毛细阻滞入渗模型试验研究

作者:王家琛1, 朱鸿鹄*1,2, 王静1, 曹鼎峰3, 苏立君2, Narala Gangadhara Reddy1,4
1.南京大学地球科学与工程学院,江苏 南京 210023;
2.中国科学院山地灾害与地表过程重点实验室,四川 成都 610041;
3.中山大学土木工程学院,广东 广州 510275;
4.印度理工学院布巴内斯瓦尔分校基础设施学院,印度 布巴内斯瓦尔 752050

摘要:毛细阻滞效应是多层、不同粒径非饱和土入渗过程中的一个自然现象。为了探究多层土水分入渗的毛细阻滞过程,设计了室内模型试验,采用主动加热光纤法(AHFO法)对多层土的水分迁移进行试验,并结合频域反射法(FDR法) 和直接观测法作为验证。试验结果表明:相较于FDR法和直接观测法,AHFO法对降雨入渗所产生的毛细阻滞现象具有较好的观测效果,可观测出水分运移的更多细节;运用FDR法,对AHFO传感器进行原位标定,曲线拟合精度R2均大于0.93,具有较高的体积含水率监测准确度;毛细阻滞层对降雨入渗具有明显的阻滞效应,即存储屏障上部入渗和减少水分向下部水体渗出。相关研究结论为毛细阻滞现象研究以及土壤水分场监测提供了一种新的监测方法。

关键词 :毛细阻滞, 主动加热光纤法, 砂土模型试验, 降雨入渗

Laboratory model tests on capillary barrier infiltration using actively heated fiber optic method

WANG Jia-chen1, ZHU Hong-hu1,2, WANG Jing1, CAO Ding-feng3, SU Li-jun2, Narala Gangadhara Reddy1,4

1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Key Lab. of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences, Chengdu 610041, China
3. School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
4. School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India

Abstract:The capillary barrier effect is a natural phenomenon during the infiltration of unsaturated soil layers with different particle sizes. In order to test the capillary barrier effect of multi-layer soils, laboratory model tests are designed. Subsequently, the actively heated fiber optic (AHFO) method is used to test the water migration of the model tests, and the direct observation method and the frequency domain reflection (FDR) technology are used for verification. The analysis of test shows that compared with the direct observation method and the FDR method, the AHFO method has a better observation effect on the capillary barrier phenomenon caused by rainfall infiltration, and can observe more details of water movement as well. The FDR method is used to perform the in-situ calibration of the AHFO sensor, and the curve-fitting accuracy R2 is greater than 0.93, indicating a high accuracy of volume water content monitoring. The capillary barrier layer has a significant retarding effect on rainfall infiltration, that is, infiltration water can be saved at the storage barrier which can also reduce seepage to the layer under the barrier. The research results may provide a new method for the research on capillary barrier effect and the monitoring of water content distribution.

Key words: capillary barrier actively heated fiber optic method sand model experiment rainfall infiltration

参考文献:

[1] AU S W C. Rainfall and slope failure in Hong Kong[J]. Engineering Geology, 1993, 36(1-2): 141-147.
[2] KASSIM A, GOFAR N, LEE L M, et al. Modeling of suction distributions in an unsaturated heterogeneous residual soil slope[J]. Engineering Geology, 2012, 131: 70-82.
[3] LEE M L, NG K Y, HUANG Y F, et al. Rainfall-induced landslides in Hulu Kelang area, Malaysia[J]. Natural Hazards, 2014, 70(1): 353-375.
[4] JONES D D, ROWE R K. BTEX migration through various geomembranes and vapor barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016044.
[5] TAN S H, WONG S W, LEE M L, et al. Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides[J]. Environmental Earth Sciences, 2018, 77(16): 589.
[6] 焦卫国, 詹良通, 季永新, 等. 黄土-碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. (JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Field test and study on water storage capacity of loess-gravel capillary barrier cover [J]. Chinese Journal of Geotechnical Engineering, 2019(6), 1-10. (in Chinese))
[7] RAHARDJO H, GOFAR N, HARNAS F, et al. Effect of Geobags on Water Flow through Capillary Barrier System[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2018, 49(2): 1-6.
[8] ZASLAVSKY D, SINAI G. Surface hydrology: IV Flow in sloping, layered soil[J]. Journal of the Hydraulics Division, 1981, 107(1): 53-64.
[9] HO C K, WEBB S W. Capillary barrier performance in heterogeneous porous media[J]. Water Resources Research, 1998, 34(4): 603-609.
[10] ROSS B. The diversion capacity of capillary barriers[J]. Water Resources Research, 1990, 26(10): 2625-2629.
[11] STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical & Geological Engineering, 1996, 14(4): 243-267.
[12] YANG H, RAHARDJO H, LEONG E C, et al. A study of infiltration on three sand capillary barriers[J]. Canadian Geotechnical Journal, 2004, 41(4): 629-643.
[13] CUDE S M, ANKENY M D, NORTON J B, et al. Capillary barriers improve reclamation in drastically disturbed semiarid shrubland[J]. Arid Land Research and Management, 2018, 32(3): 259-276.
[14] NIU Q, FRATTA D, WANG Y H. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils[J]. Journal of Hydrology, 2015, 522: 475-487.
[15] BARBOUR S L, HENDRY M J, CAREY S K. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock[J]. Journal of Hydrology, 2016, 534: 616-629.
[16] 张志军, 李亚俊, 贺桂成, 等. 某尾矿坝毛细水带内的坝体材料物理力学特性研究[J]. 岩土力学, 2014, 35(6): 1561-1568. (ZHANG Zhi-jun, LI Ya-jun, HE Gui-cheng, et al. Study of physico-mechanical properties of dam body materials in capillary water fringe of a certain tailings dam[J]. Rock and Soil Mechanics, 2014, 35(6): 1561–1568. (in Chinese))
[17] DOBRIYAL P, QURESHI A, BADOLA R, et al. A review of the methods available for estimating soil moisture and its implications for water resource management[J]. Journal of Hydrology, 2012, 458: 110-117.
[18] SU S L, SINGH D N, BAGHINI M S. A critical review of soil moisture measurement[J]. Measurement, 2014, 54: 92-105.
[19] YIN Z, LEI T, YAN Q, et al. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Computers and Electronics in Agriculture, 2013, 99: 101-107.
[20] CAO D, SHI B, ZHU H, et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 700-707.
[21] 郝瑞, 施斌, 曹鼎峰, 等. 基于 AHFO 技术的毛细水运移模型验证试验研究[J]. 岩土工程学报, 2019, 41(2): 376-382. (HAO Rui, SHI Bin, CAO Ding-feng, et al. Experimental study on capillary water transport model based on AHFO technology [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 376-382. (in Chinese))
[22] CAO D, SHI B, ZHU H, et al. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 212-217.
[23] CAO D, SHI B, WEI G, et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers[J]. Measurement, 2018, 123: 175-184.
[24] 曹鼎峰, 施斌, 顾凯, 等. 土的含水率 AHFO 法测量中分段函数模型建立[J]. 水文地质工程地质, 2016, 43(6): 41-47. (CAO Ding-feng, SHI Bin, GU Kai, et al. Establishment of the piecewise function model in the process of soil moisture monitoring with the AHFO method[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 41–47. (in Chinese))
[25] LU N, LIKOS W. Unsaturated soil mechanics[M]. USA: John Wiley & Sons, Inc., 2004.
[26] KODEŠOVÁ R, KODEŠ V, Mraz A. Comparison of two sensors ECH2O EC-5 and SM200 for measuring soil water content[J]. Soil and Water Research, 2011, 6(2): 102-110.
[27] DECAGON. EC-5 volumetric water content sensor: manual[EB/OL]. 2015
[28]董翰川, 庞丽丽, 史云. 频域反射分析法测定土壤含水率标定试验研究[J]. 水文地质工程地质, 2019, 46(3):55-61. (DONG Han-chuan, PANG Li-li, SHI Yun. An experimental study of calibration of soil moisture content by using the frequency domain reflectometry[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 55-61. (in Chinese))
[29] HILHORST M A, BALENDONCK J, KAMPERS F W H. A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedance[J]. IEEE Journal of Solid-state Circuits, 1993, 28(7): 764-769.
[30] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal. 1980, 44(5): 892 – 898.
[31] 段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管 FBG 渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510. (DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al. A quasi-distributed velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese))
[32] HSU S Y, HUANG V, PARK S W, et al. Water infiltration into prewetted porous media: Dynamic capillary pressure and Green-Ampt modeling[J]. Advances in Water Resources, 2017, 106: 60-67.
[33] DE VRIES D A. Thermal properties of soil. In ‘Physics of Plant Environment’[M]. North-Holland: Amsterdam. 1963: 210–235
[34] BRISTOW K L. 5.3 Thermal Conductivity[J]. Methods of Soil Analysis: Part 4 Physical Methods, 2002, 5: 1209-1226.
[35] 曹鼎峰, 施斌, 严珺凡, 等. 基于 C-DTS 的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915. (CAO Ding-feng, SHI Bin, YAN Jun-fan, et al. Distributed method for measuring moisture content of soils based on C-DTS[J]. 2014, 36(5): 910-915. (in Chinese))
[36] BENÍTEZ-BUELGA J, SAYDE C, RODRÍGUEZ-SINOBAS L, et al. Heated fiber optic distributed temperature sensing: A dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-12.
[37] WU J, SHI B, CAO D, et al. Model test of soil deformation response to draining-recharging conditions based on DFOS[J]. Engineering Geology, 2017, 226: 107-121.
[38] LIU S, SHI B, GU K, et al. Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study[J]. Natural Hazards, 2020, 103: 3043-3061.