基于光纤光栅的冻土含冰量监测可行性试验研究

作者:吴冰1, 朱鸿鹄*,1,2, 曹鼎峰3, 魏广庆4, 施斌1

1. 南京大学地球科学与工程学院,江苏 南京 210023;
2. 冻土工程国家重点实验室,甘肃 兰州 730000;
3. 中山大学土木工程学院,广东 广州 519082;
4. 苏州南智传感科技有限公司,江苏 苏州 215123

摘要:含冰量是冻土研究的一项重要参数。针对现有含冰量测量的局限性,提出了一种基于光纤布拉格光栅(FBG)的冻土含冰量监测方法。结合冻土温度场,应用内加热FBG刚玉管传感器,通过室内标定试验验证该方法的可行性;基于传统导热系数模型推导出温度特征值与含冰量之间相应函数模型,并应用试验数据进行验证。研究结果表明:试验所得温度特征值随冻土含冰量增加而减小,可以通过该规律初步判断含冰量范围;在温度特性值与含冰量数值关系的拟合中,指数函数模型与本次试验数据拟合度最高,含冰量测量误差小于2%,在可接受范围内;本方法实现冻土含冰量监测具有可行性。

关键词: 冻土, 含冰量, FBG, 函数模型

基金资助: 国家重点研发计划项目(2018YFC1505104); 国家自然科学基金优秀青年基金项目(41722209); 冻土工程国家重点实验室开放基金项目(SKLFSE201814)

图1 AH-FBG探针结构图

图3 (a) 含冰量参考值-温度特征值关系曲线;(b) 监测结果误差分析

参考文献:
[1] 徐学祖, 邓友生. 冻土中水分迁移的实验研究[M]. 北京: 科学出版社, 1991: 21-29.
(XU Xue-zu, DENG You-sheng.Experimental research on water transport in frozen soil[M]. Beijing: Science Press, 1991: 21-29.(in Chinese))
[2] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2010: 102-103.
(XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin.Physics of frozen soil[M]. 2nd ed. Beijing: Science Press, 2010: 102-103. (in Chinese))
[3] 霍托维奇Н А. 冻土力学[M]. 张长庆, 等译. 北京: 科学出版社, 1985. (ЧЬЛТОВИЧ Н А. Frozen soil mechanics[M]. ZHANG Chang-qing, et al trans. Beijing: Science Press, 1985. (in Chinese))
[4] FABBRI A, FEN-CHONG T, COUSSY O.Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials[J]. Cold Regions Science & Technology, 2006, 44(1): 52-66.
[5] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 37-44.
(ZHOU You-wu, GUO Dong-xin, QIU Guo-qing, et al.Geocryology in China[M]. Beijing: Science Press, 2000: 37-44. (in Chinese))
[6] 程强. 冻土冰/水含量同腔共射原位测定方法创新与冻融模型检验[D]. 北京: 中国农业大学, 2014.
(CHENG Qiang.A Co-Tube-Radiation method of in-situ determation of ice and liquid water content in frozen soil and freeze-thaw model validation[D]. Beijing: China Agricultural University, 2014. (in Chinese))
[7] PATTERSON D E.The measurement of unfrozen water content by time domain reflectometry results from laboratory tests[J]. Canadian Geotechnical Journal, 1981, 18(1): 131-144.
[8] BITTELLI M, FLURY M, CAMPBELL G S.A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media[J]. Water Resources Research, 2003, 39(2): 1041.
[9] 王丽萍, 刘霞, 边海明, 等. 用于估算冻土中液态水分量的TDR数据校正[J]. 内蒙古农业大学学报(自然科学版), 2011, 32(1): 208-214.
(WANG Li-ping, LIU Xia, BIAN Hai-ming, et al.Calibration of TDR data for moisture estimation in frozen soil[J]. Journal of Inner Mongolia Agricultural University, 2011, 32(1): 208-214. (in Chinese))
[10] TICE A R.Determination of unfrozen water in frozen soil by pulsed nuclear magnetic resonance[C]// Proceedings of 3rd International Conference on Permafrost. Ottawa, 1978: 149-155.
[11] LIU G, SI B C.Soil ice content measurement using a heat pulse probe method[J]. Canadian Journal of Soil Science, 2011, 91(2): 235-246.
[12] WATANABE K, WAKE T.Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science & Technology, 2009, 59(1): 34-41.
[13] 谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572.
(TAN Long, WEI Chang-fu, TIAN Hui-hui, et al.Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese))
[14] BAKER J.Water relations of frozen soil[J]. Investigative Ophthalmology & Visual Science, 2004, 45(2): 466-72.
[15] ZHU Hong-hu, SHI Bin, ZHANG Cheng-cheng.FBG-based monitoring of geohazards: current status and trends[J]. Sensors, 2017, 17(3): 452.
[16] 徐东升. 一种新型光纤光栅局部位移计在小应变测量中的应用[J]. 岩土工程学报, 2017, 39(7): 1330-1335.
(XU Dong-sheng.New fiber Bragg grating sensor-based local displacement transducer for small strain measurements of soil specimens[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1330-1335. (in Chinese))
[17] 范成凯, 孙艳坤, 李琦, 等. 页岩单轴压缩破坏试验的光纤布拉格光栅测试技术研究[J]. 岩土力学, 2017, 38(8): 2456-2464.
(FAN Cheng-kai, SUN Yan-kun, LI Qi, et al.Testing technology of fiber Bragg grating in the shale damage experiments under uniaxial compression conditions[J]. Rock and Soil Mechanics, 2017, 38(8): 2456-2464. (in Chinese))
[18] 李焕强, 孙红月, 刘永莉, 等. 光纤传感技术在边坡模型试验中的应用[J]. 岩石力学与工程学报, 2008, 27(8): 1703-1708.
(LI Huan-qiang, SUN Hong-yue, LIU Yong-li, et al.Application of optical fiber sensing technology to slope model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1703-1708. (in Chinese))
[19] XU Dong-sheng.A new measurement approach for small deformations of soil specimens using fiber bragg grating sensors[J]. Sensors, 2017, 17(5): 1061.
[20] 朱鸿鹄, 殷建华, 张林, 等. 大坝模型试验的光纤传感变形监测[J]. 岩石力学与工程学报, 2008, 27(6): 1188-1188.
(ZHU Hong-hu, YIN Jian-hua, ZHANG Lin, et al.Deformation monitoring of dam model test by optical fiber sensors[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1188-1188. (in Chinese))
[21] CAO Ding-feng, SHI Bin, ZHU Hong-hu, et al.A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 700-707.
[22] 段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510.
(DUAN Chao-zhe, SHI Bin, CAO Ding-feng, et al.A quasi-distributed internal heating seepage velocity monitoring method of FBG embedded in alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510. (in Chinese))
[23] 曹鼎峰, 施斌, 严珺凡, 等. 基于C-DTS的土壤含水率分布式测定方法研究[J]. 岩土工程学报, 2014, 36(5): 910-915.
(CAO Ding-feng, SHI Bin, YAN Jun-fan, et al.Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. (in Chinese))
[24] 何瑞霞, 金会军, 赵淑萍, 等. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126.
(HE Rui-xia, JIN Hui-jun, ZHAO Shu-ping, et al.Review of status and progress of the study in thermal conductivity of frozen soil[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 116-126. (in Chinese))
[25] 胡田飞. 冻土热物性参数的确定方法及热响应测试研究进展[J]. 路基工程, 2015(5): 7-11.
(HU Tian-fei.Research progress on determination methods of thermal physical parameters and thermal response test of frozen soil[J]. Subgrade Engineering, 2015(5): 7-11. (in Chinese))
[26] ZHU M.Modeling and simulation of frost heave in frost- susceptible soils[D]. Michigan: University of Michigan, 2006.
[27] 陈飞熊, 李宁, 程国栋. 饱和正冻土多孔多相介质的理论构架[J]. 岩土工程学报, 2002, 24(2): 213-217.
(CHEN Fei-xiong, LI Ning, CHENG Guo-dong.The theoretical frame of multi-phase porous medium for the freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 213-217. (in Chinese))
[28] 韩天一. 正冻土水热力耦合的数值机理研究[D]. 兰州: 兰州大学, 2008.
(HAN Tian-yi.Numerical research on the coupled mechanism of the moisture-heat-stress fields in freezing soil[D]. Lanzhou: Lanzhou University, 2008. (in Chinese))

Feasibility study on FBG-based monitoring method for ice content in frozen soil

WU Bing1, ZHU Hong-hu1,2, CAO Ding-feng3, WEI Guang-qing4, SHI Bin1

1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
2. State Key Laboratory of Frozen Soil Engineering, Lanzhou 730000, China;
3. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 519082, China;
4. Nanzee Sensing Technology Co., Ltd., Suzhou 215123, China

Abstract:
The ice content is an important parameter in frozen soil research. Aiming at the limitation of the existing ice content measurement, a method based on fiber Bragg grating (FBG) for monitoring the ice content in frozen soil is proposed. Based on the temperature field of frozen soil, a series of indoor calibration tests are performed using the FBG corundum tube sensor with internal heating. The corresponding function model between characteristic value of temperature and ice content is deduced and verified using the experimental data. The results show that the proposed method is feasible to monitor the ice content in frozen soil, the characteristic value of temperature decreases with the increase of ice content in frozen soil, and the approximate range of ice content can be preliminarily judged by this law. In the fitting of the function model, the exponential function model has the highest fitting degree with the experimental data, and the measurement error of ice content is less than 2% within the acceptable range.

Key words: frozen soil ice content FBG function model