【论文】透水管桩现场试验光纤监测与承载性能研究

作者:王静1,肖涛2,朱鸿鹄1,梅国雄2,刘拯源1,魏广庆3
1. 南京大学 地球科学与工程学院,江苏 南京 210023;
2. 广西大学 土木建筑工程学院,广西 南宁 530004;
3. 苏州南智传感科技有限公司,江苏 苏州 215123

来源:岩土力学, 2021, 42(7): 1961-1970.

摘 要:在软土地基中设置透水管桩可以加快沉桩引起的超静孔隙水的消散速率,进而加速桩周土的固结。目前国内外对透水管桩承载力和透水性能的模型试验和数值模拟研究较多,但深入探究桩基承载力的时间效应和荷载传递规律的现场试验研究较少。通过基于光纤布拉格光栅(FBG)的现场静载试验,研究了软土地基中透水管桩桩身应变分布及内力传递规律,并分析了桩身不同位置处桩−土界面超孔隙水压力随时间的变化规律与桩基承载力时间效应的关系。试验结果表明:沉桩结束前期,透水管桩的单桩竖向抗压承载力增长率较高,并且随时间逐渐降低;试验场地条件下,沉桩后10 d内透水管桩承载力的提高主要来源于桩侧摩阻力,10~24 d内桩端阻力对桩基承载力提高的贡献明显增加;桩−土界面的超孔压沿桩深度增加,随着桩端附近超孔压加速消散,土体有效应力增大,桩侧摩阻力和桩端阻力也随之增大。研究成果对软土地基中透水管桩的设计和施工具有一定的指导意义。

关键词:透水管桩;光纤布拉格光栅(FBG);承载性能;桩基内力;超孔隙水压力

Fiber optic monitoring and bearing capacity analysis of permeable pipe pile in field test

WANG Jing1, XIAO Tao2, ZHU Hong-hu1, MEI Guo-xiong2, LIU Zheng-yuan1, WEI Guang-qing3
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
3. Suzhou NanzZee Sensing Technology, Ltd., Suzhou, 215123, China)

Abstract: Permeable pipe piles are used in soft soil foundation to accelerate the dissipation rate of excess pore water pressure induced by pile driving and then to accelerate consolidation of surrounding soils. The relevant studies are mainly model testing and numerical simulation of the bearing capacity and permeability performance of permeable pipe piles. However, few in-depth field tests have been conducted to study the time effect of bearing capacity and load transfer law of permeable pipe piles. Based on the fiber Bragg grating (FBG) technology, the static load tests were carried out to study the strain distributions of a permeable pipe pile in soft soil foundation and the internal force transfer of the pile body. Meanwhile, the relationship between the variation of excess pore water pressure of the pile-soil interface and the time effect of bearing capacity of the permeable pipe pile is analyzed. The test results show that the growth rate of bearing capacity of a single permeable pipe pile under increased vertical loads is higher in the early pile driving stage, and then gradually decreases with time. The increase of bearing capacity of the permeable pipe pile within 10 days under the test site condition is mainly due to the pile skin friction, whereas the pile tip resistance contributes more to the enhancement of bearing capacity within 10-24 days. The excess pore water pressure of the pile-soil interface increases along the pile depth. With the rapid dissipation of the excess pore water pressure near the pile tip, the effective stress of soil gradually increases, and the pile skin friction and pile tip resistance also increase. This study provides an improved insight into the design and construction of permeable pipe piles in soft soil foundation.

Keywords: permeable pipe pile; fiber Bragg grating (FBG); bearing capacity; pile internal force; excess pore water pressure

参 考 文 献
[1] 唐世栋, 何连生, 傅纵. 软土地基中单桩施工引起的超孔隙水压力[J]. 岩土力学, 2002, 23(6): 725-729, 732. TANG Shi-dong, HE Lian-sheng, FU Zong. Excess pore water pressure caused by an installing pile in soft foundation[J]. Rock and Soil Mechanics, 2002, 23(6): 725-729, 732.
[2] 赵春风, 杜兴华, 赵程, 等. 中掘预应力管桩挤土效应试验研究[J]. 岩土工程学报, 2013, 35(3): 415-421. ZHAO Chun-feng, DU Xing-hua, ZHAO Cheng, et al. Squeezing effect of inner-digging prestressed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 415-421.
[3] 张明义, 邓安福. 预制桩静力贯入层状地基的试验研究[J]. 岩土工程学报, 2000, 22(4): 490-492. ZHANG Ming-yi, DENG An-fu. Experimental study on jacked precast piles in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 490-492.
[4] 罗战友. 静压桩挤土效应及施工措施研究[D]. 杭州: 浙江大学, 2004. LUO Zhan-you. Study on compacting effects and construction measures of tacked pile[D]. Hangzhou: Zhejiang University, 2004.
[5] 曾超峰, 薛秀丽, 梅国雄. 透水管桩技术研究进展[J]. 岩土工程学报, 2017, 39(增刊2): 228-231. ZENG Chao-feng, XUE Xiu-li, MEI Guo-xiong. A review of recent advances in permeable pipe pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Suppl.2): 228-231.
[6] 戴郑新. 透水管桩承载性能研究[D]. 南京: 南京工业大学, 2015. DAI Zheng-xin. Analysis of permeable pipe bearing capacity[D]. Nanjing: Nanjing University of Technology, 2015.
[7] 黄勇, 王军, 梅国雄. 透水管桩加速超静孔压消散的单桩模型试验研究[J]. 岩土力学, 2016, 37(10): 2893-2898, 2908. HUANG Yong, WANG Jun, MEI Guo-xiong. Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile[J]. Rock and Soil Mechanics, 2016, 37(10): 2893-2898, 2908.
[8] 黄勇, 梅国雄, 王钰轲. 透水管桩的群桩沉桩室内模型试验研究[J]. 河北工程大学学报(自然科学版), 2016, 33(3): 18-23. HUANG Yong, MEI Guo-xiong, WANG Yu-ke. Laboratory model experimental investigation of permeable pipe piles[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(3): 18-23.
[9] 周小鹏, 梅国雄. 透水桩技术及桩周土体固结效率有限元分析[J]. 南京工业大学学报(自然科学版), 2014, 36(3): 101-105. ZHOU Xiao-ping, MEI Guo-xiong. Permeable pile technology and its efficiency analysis of soil consolidation adjacent to pile[J]. Journal of Nanjing Tech University (Natural Science Edition), 2014, 36(3): 101-105.
[10] NI P, MANGALATHU S, MEI G, et al. Laboratory investigation of pore pressure dissipation in clay around permeable piles[J]. Canadian Geotechnical Journal, 2018, 55(9): 1257-1267.
[11] NI P, MANGALATHU S, MEI G, et al. Permeable piles: an alternative to improve the performance of driven piles[J]. Computers and Geotechnics, 2017, 84: 78-87.
[12] NI P, MANGALATHU S, MEI G, et al. Compressive and flexural behaviour of reinforced concrete permeable piles[J]. Engineering Structures, 2017, 147: 316-327.
[13] 朱友群, 朱鸿鹄, 孙义杰, 等. FBG-BOTDA联合感测管桩击入土层模型试验研究[J]. 岩土力学, 2014, 35(增刊2): 695-702. ZHU You-qun, ZHU Hong-hu, SUN Yi-jie, et al. Model experiment study of pipe driving into soil using FBG-BOTDA sensing monitoring technology[J]. Rock and Soil Mechanics, 2014, 35(Suppl. 2): 695-702.
[14] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.
[15] PELECANOS L, SOGA K, ELSHAFIE M Z E B, et al. Distributed fiber optic sensing of axially loaded bored piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017122.
[16] 魏广庆, 施斌, 贾建勋, 等. 分布式光纤传感技术在预制桩基桩内力测试中的应用[J]. 岩土工程学报, 2009, 31(6): 911-916. WEI Guang-qing, SHI bin, JIA Jian-xun, et al. Application of distributed optical fiber sensing to testing inner force of prefabricated piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 911-916.
[17] 朱鸿鹄, 殷建华, 靳伟, 等. 基于光纤光栅传感技术的地基基础健康监测研究[J]. 土木工程学报, 2010, 43(6): 109-115. ZHU Hong-hu, YIN Jian-hua, JIN Wei, et al. Health monitoring of foundations using fiber Bragg grating sensing technology[J]. China Civil Engineering Journal, 2010, 43(6): 109-115.
[18] GAO L, YANG K, CHEN X R, et al. Study on the deformation measurement of the cast-in-place large-diameter pile using fiber Bragg grating sensors[J]. Sensors, 2017, 17(3): 505.
[19] GAO L, HAN C, XU Z Q, et al. Experimental study on deformation monitoring of bored pile based on BOTDR[J]. Applied Sciences, 2019, 9(12): 2435.
[20] 王永洪, 张明义, 张春巍, 等. 光纤光栅传感技术在PHC管桩中不同埋设工艺试验研究[J]. 工程地质学报, 2018, 26(2): 445-450. WANG Yong-hong, ZHANG Ming-yi, ZHANG Chun-wei, et al. Testing study of two methods for installing fiber Bragg grating sensing in PHC pipe piles[J]. Journal of Engineering Geology, 2018, 26(2): 445-450.
[21] 王永洪, 张明义, 白晓宇, 等. 基于光纤光栅传感技术的静压沉桩贯入特性及影响因素研究[J]. 岩土力学, 2019, 40(12): 4801-4812. WANG Yong-hong, ZHANG Ming-yi, BAI Xiao-yu, et al. Study of penetration characteristics and influence factor of jacked pile based on fiber bragg grating sensing technology[J]. Rock and Soil Mechanics, 2019, 40(12): 4801-4812.
[22] 秦伟, 戴国亮, 马李志, 等. 珊瑚礁地层中PHC 桩原位静载试验研究[J]. 岩土力学, 2019, 40(增刊1): 381-389. QIN Wei, DAI Guo-liang, MA Li-zhi, et al. In-situ static loading tests of prestressed high strength concrete (PHC) pile in coral strata[J]. Rock and Soil Mechanics, 2019, 40(Suppl.1): 381-389.
[23] LEE W, LEE W J, LEE S B, et al. Measurement of pile load transfer using the fiber Bragg grating sensor system[J]. Canadian Geotechnical Journal, 2004, 41(6): 1222-1232.
[24] WANG Y, LIU X, ZHANG M, et al. Test and study of pipe pile penetration in cohesive soil using FBG sensing technology[J]. Sensors, 2020, 20(7): 1934.
[25] KOU H, CHU J, GUO W, et al. Field study of residual forces developed in pre-stressed high-strength concrete (PHC) pipe piles[J]. Canadian Geotechnical Journal, 2016, 53(4): 696-707.
[26] ZHU H, SHI B, ZHANG C. FBG-based monitoring of geohazards: current status and trends[J]. Sensors, 2017, 17(3): 452.
[27] 苗鹏勇, 王宝军, 施斌, 等. 特征点压缩算法在分布式光纤桩基检测中的应用[J]. 岩土力学, 2017, 38(3): 911-917. MIAO Peng-yong, WANG Bao-jun, SHI Bin, et al. Application of feature point compression algorithm to pile foundation detection using distributed optical fiber[J]. Rock and Soil Mechanics, 2017, 38(3): 911-917.
[28] 魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报, 2009, 31(4): 571-576. WEI Guang-qing, SHI Bin, HU Sheng. Several key problems in tunnel construction monitoring with FBG[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 571-576.
[29] 高磊, 陈晖东, 余湘娟, 等. 岩土与地质工程中分布式光纤传感技术研究进展[J]. 水利水运工程学报, 2013, (2): 94-96. GAO Lei, CHEN Hui-dong, YU Xiang-juan, et al. Advance of the distributed optical fiber technology in geotechnical and geological engineering[J]. Hydro-science and Engineering, 2013, (2): 94-96.
[30] 中华人民共和国住房和城乡建设部. JGJ 106-2014建筑基桩检测技术规范[S]. 北京: 中国建筑工业出版社, 2014.
[31] 寇海磊, 张明义, 刘俊伟. 基于光纤传感技术静压桩承载力时效性机理分析[J]. 岩土力学, 2013, 34(4): 1082-1088. KOU Hai-lei, ZHANG Ming-yi, LIU Jun-wei. Bearing capacity efficiency mechanism analysis of jacked pile based on optical fiber sensing technology[J]. Rock and Soil Mechanics, 2013, 34(4): 1082-1088.
[32] 唐世栋, 何连生, 傅纵. 软土地基中单桩施工引起的超孔隙水压力[J]. 岩土力学, 2002, 23(6): 725-729, 732. TANG Shi-dong, HE Lian-sheng, FU Zong. Excess pore water pressure caused by an installing pile in soft foundation[J]. Rock and Soil Mechanics, 2002, 23(6): 725-729, 732.
[33] 王永洪, 张明义, 刘俊伟, 等. 黏性土中单桩贯入桩−土界面超孔压和土压测试现场试验[J]. 岩土工程学报, 2019, 41(5): 950-958. WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, et al. Field tests on excess pore pressure and soil pressure of pile-soil interface for a single pile during pile-sinking in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 950-958.
[34] 胡永强, 汤连生, 李兆源. 静压桩桩−土界面滑动摩擦机制研究[J]. 岩土力学, 2015, 36(5): 1288-1294. HU Yong-qiang, TANG Lian-sheng, LI Zhao-yuan. Mechanism of sliding at pile-soil interface of jacked pile[J]. Rock and Soil Mechanics, 2015, 36(5): 1288-1294.
[35] 宋兵, 蔡健. 预应力管桩侧摩阻力影响因素的研究[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3863-3869. SONG Bing, CAI Jian. Research on influence factors of side soil resistance of PHC pipe pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl.2): 3863-3869.

引用本文:

王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.

WANG Jing, XIAO Tao, ZHU Hong-hu, MEI Guo-xiong, LIU Zheng-yuan, WEI Guang-qing, . Study on bearing capacity of permeable pipe pile by field optical fiber monitoring[J]. Rock and Soil Mechanics, 2021, 42(7): 1961-1970.