摘要:斜坡-条形基础问题因受到地基承载力与边坡稳定性的双重影响而显得异常复杂。为深入探究斜坡上条形基础的破坏机制,本研究采用物质点法(MPM)开展数值模拟研究,该法尤为适合模拟岩土大变形问题。通过与文献中的试验数据对照,证实了MPM在预测地基承载力和辨别破坏模式上的高度准确性。研究表明,若后退距离、土体黏聚力或内摩擦角增大,则地基承载力将线性增长,但地基承载力亦会随斜坡坡角增大而减少。当基础与斜坡距离较远时,其受力变形模式与平地上的基础相似。随着坡角从15°增至75°,所需的临界后退距离比从3逐渐增至8,并且这一变化更多地受内摩擦角的控制,而非黏聚力。基于后退距离和斜坡坡角,可识别出斜坡上基础的四种破坏模式。其中,存在一个过渡的破坏模式,即基础失稳与斜坡失稳的组合。通过实证研究,建立了后退距离与坡角之间的关系,这有助于预测地基承载力减少率。最后,提出了一个斜坡上条形基础的破坏模式分类系统,为岩土工程师优化斜坡上的基础设计方案提供了指导建议。
关键词:地基承载力 · 条形基础 · 物质点法 · 斜坡稳定性 · 失效模式
论文标题:Modeling strip footings on slopes using the material point method
作者:Tian-Cheng Xie, Hong-Hu Zhu, Chun-Xin Zhang & Wei Zhang
来源:Bulletin of Engineering Geology and the Environment volume 82, Article number: 99 (2023)
Keywords: Bearing capacity · Strip footing · Material point method · Slope stability · Failure mode
References
Acharyya R, Dey A (2019) Assessment of bearing capacity for strip footing located near sloping surface considering ANN model. Neural Comput Appl 31(11):8087–8100
Acosta JLG, Vardon PJ, Hicks MA (2021) Study of landslides and soil-structure interaction problems using the implicit material point method. Eng Geol 285:106043
Amar S, Baguelin F, Canepa Y (1998) Shallow foundations experimental study under cyclic loading. Proc Geotechnical Hazards, Rotterdam
Azarafza M, Asghari-Kaljahi E, Moshrefy-far M (2014) Numerical modeling and stability analysis of shallow foundations located near slopes (Case study: Phase 8 Gas Flare Foundations of South Pars Gas Complex). J Appl Geol 10(2):92–99
Azarafza M, Akgun H, Ghazifard A et al (2021) Discontinuous rock slope stability analysis by limit equilibrium approaches–a review. Int J Digital Earth 14(12):1918–1941
Briaud JL, Jeanjean P (1994) Load settlement curve method for spread footings on sand. Proc. vertical and horizontal deformations of foundations and embankments. Geotechn Spec Publ 40(2):1774–1804
Casablanca O, Biondi G, Cascone E et al (2021) Static and seismic bearing capacity of shallow strip foundations on slope. Geotechnique 20(44):1–15
Castelli F, Lentini V (2012) Evaluation of the bearing capacity of footings on slopes. Int J Phys Model Geotech 12(3):112–118
Chen X, Zhang L, Chen L et al (2019a) Slope stability analysis based on the Coupled Eulerian-Lagrangian finite element method. Bull Eng Geol Environ 78(6):4451–4463
Chen Y, Zhao W, Han J et al (2019b) A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Comput Geotech 111:126–136
Chen X, Li D, Tang X et al (2021) A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil. Landslides 18(9):3149–3162
Cure E, Sadoglu E, Turker E et al (2014) Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope. Geomech Eng 6(5):469–485
Demirci HE, Karaman M, Bhattacharya S (2021) Behaviour of buried continuous pipelines crossing strike-slip faults: experimental and numerical study. J Nat Gas Sci Eng 92: 103980
Do TN, Wu JH (2020a) Simulation of the inclined jointed rock mass behaviors in a mountain tunnel excavation using DDA. Comput Geotech 117:103249
Do TN, Wu JH (2020b) Verifying discontinuous deformation analysis simulations of the jointed rock mass behavior of shallow twin mountain tunnels. Int J Rock Mech Min Sci 130:104322
Esmatkhah IA, Azadi A, Nikbakht M et al (2022) GIS-based Settlement Risk Assessment and its Effect on Surface Structures: A Case Study for the Tabriz Metro–line 1. Geotech Geol Eng 40(10):5081–5102
Fern J, Rohe A, Soga K et al (2019) The Material Point Method For Geotechnical Engineering: a practical guide. CRC Press, Boca Raton
Georgiadis K (2010a) An upper-bound solution for the undrained bearing capacity of strip footings at the top of a slope. Geotechnique 60(10):801–806
Georgiadis K (2010b) Undrained bearing capacity of strip footings on slopes. J Geotech Geoenviron Eng 136(5):677–685
Hansen JB (1970) A revised and extended formula for bearing capacity. Danish Geotechnical Institute, Copenhagen (Bulletin 28)
Huang B, Liu J, Fan J et al (2021) Analytical solution for upheaval buckling of shallow buried pipelines in inclined cohesionless soil. J Zhejiang Univ Sci A 22(5):369–381
Kang J, Wan D, Sheng Q et al (2022) Risk assessment and support design optimization of a high slope in an open pit mine using the jointed finite element method and discontinuous deformation analysis. Bull Eng Geol Environ 81(6):1–17
Keskin MS, Laman M (2013) Model studies of bearing capacity of strip footing on sand slope. KSCE J Civ Eng 17(4):699–711
Kumar A, Saran S (2003) Bearing capacity of rectangular footing on reinforced soil. Geotech Geol Eng 21(3):201–224
Kusakabe O, Kimura T, Yamaguchi H (1981) Bearing capacity of slopes under strip loads on the top surfaces. Soils Found 21(4):29–40
Leshchinsky B (2015) Bearing capacity of footings placed adjacent to c′-ϕ′ slopes. J Geotech Geoenviron Eng 141(6):04015022
Liu H, Chen LP, Ai YW et al (2009) Heavy metal contamination in soil alongside mountain railway in Sichuan. China Environ Monit Assess 152(1):25–33
Liu X, Wang Y, Li DQ (2019) Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Comput Geotech 111:301–312
Lobo-Guerrero S, Vallejo L (2010) DEM analysis of the effect of granular crushing on the bearing capacity of footings. Int J Geotech Eng 4(3):351–359
Lutenegger AJ, Adams MT (1998) Bearing capacity of footings on compacted sand. Proc 4th Int Conf on Case Histories in Geotechnical Engineering, pp 1216–1224
Meyerhof GG (1957) The ultimate bearing capacity of foundations on slopes, vol 1. Proc 4th Int Conf on Soil Mechanics and Foundation Engineering, pp 384–386
Michalowski RL (1989) Three-dimensional analysis of locally loaded slopes. Geotechnique 39(1):27–38
Motra HB, Stutz H, Wuttke F (2016) Quality assessment of soil bearing capacity factor models of shallow foundations. Soils Found 56(2):265–276
Narita K, Yamaguchi H (1990) Bearing capacity analysis of foundations on slopes by use of log-spiral sliding surfaces. Soils Found 30(3):144–152
Pantelidis L, Griffiths DV (2015) Footing on the crest of slope: slope stability or bearing capacity? Eng Geol Soc Territory 2:1231–1234
Peng S, Liao W, Liu E (2020) Pipe–soil interaction under the rainfall-induced instability of slope based on soil strength reduction method. Energy Rep 6:1865–1875
Prandtl L (1920) Uber die harte plasticher korper. Nachr Ges Wissensch Göttingen Math Phys Klasse 1920:74–85
Qiu G, Henke S, Grabe J (2011) Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39
Shiau JS, Merifield RS, Lyamin AV et al (2011) Undrained stability of footings on slope. Int J Geomech 11(5):381–390
Soga K, Alonso E, Yerro A et al (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Geotechnique 66(3):248–273
Stead D, Eberhardt E, Coggan J et al (2001) Advanced numerical techniques in rock slope stability analysis-applications and limitations. International Conference on landslides-causes, impacts and countermeasures. VGE, Essen, pp 615–624
Terzaghi K (1943) Theoretical Soil Mechanics. Wiley, New York
Trautmann CH, Kulhawy FH (1988) Uplift load-displacement behavior of spread foundations. J Geotech Eng 114(2):168–184
Troncone A, Pugliese L, Conte E (2022) Analysis of an excavation-induced landslide in stiff clay using the material point method. Eng Geol 296:106479
Vazouras P, Dakoulas P, Karamanos SA (2015) Pipe–soil interaction and pipeline performance under strike-slip fault movements. Soil Dynam Earthq Eng 72:48–65
Vesic AS (1975) Bearing capacity of shallow foundations. Foundation Engineering Handbook 5(4):121–147
Wang B, Vardon PJ, Hicks MA (2018) Rainfall-induced slope collapse with coupled material point method. Eng Geol 239:1–12
Wang J, Zhang W, Xie CY et al (2020a) Forecasting disastrous characteristics of highway landslides using the material point method: a surcharge-induced perspective. Adv Civil Eng 2020:8859344
Wang JC, Zhu HH, Shi B et al (2020b) Strain-based stability analysis of locally loaded slopes under variable conditions. Geomech Eng 23(3):289–300
Wang L, Wu C, Gu X et al (2020c) Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bull Eng Geol Environ 79(6):2763–2775
Wang Z, Gu D, Zhang W (2020d) Influence of excavation schemes on slope stability: a DEM study. J Mt Sci 17(6):1509–1522
Wang MX, Li DQ, Du W (2021a) Probabilistic seismic displacement hazard assessment of Earth slopes incorporating spatially random soil parameters. J Geotech Geoenviron Eng 147(11):04021119
Wang W, Li DQ, Liu Y et al (2021b) Influence of ground motion duration on the seismic performance of earth slopes based on numerical analysis. Soil Dynam Earthq Eng 143:106595
Xie Y, Leshchinsky B (2017) Ultimate bearing capacity near slopes: transition from a bearing capacity problem to a slope stability problem. Geotech Front, pp 255–263
Yang X, Wang Z, Zou J et al (2007) Bearing capacity of foundation on slope determined by energy dissipation method and model experiments. J Cent S Univ Technol 14(1):125–128
Yang S, Leshchinsky B, Cui K et al (2021) Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes. Geotechnique 71(7):594–607
Yerro A, Soga K, Bray J (2019) Runout evaluation of Oso landslide with the material point method. Can Geotech J 56(9):1304–1317
Zhang CX, Zhu HH, Zhang W et al (2022a) Modeling uplift failure of pipes buried in sand using material point method. Tunn Undergr Space Technol 119:104203
Zhang CX, Zhu HH, Li HJ (2022b) Modeling pipe-soil interaction under downward relative movement using B-spline material point method. J Rock Mech Geotech Eng. https:// doi. org/ 10. 1016/j.jrmge. 2022. 07. 010 (on line)
Zhang P, Liu LL, Zhang SH et al (2022c) Material point method-based two-dimensional cohesive-frictional slope stability analysis chart considering depth coefficient effect. Bull Eng Geol Environ 81(5):206
Zhou H, Zheng G, Yin X et al (2018) The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Comput Geotech 94:12–21
Zhou H, Zheng G, Yang X et al (2019) Ultimate seismic bearing capacities and failure mechanisms for strip footings placed adjacent to slopes. Can Geotech J 56(11):1729–1735