【论文】考虑裂缝影响的膨胀土水分主动加热光纤光栅传感技术研究

研究背景:在膨胀土工程问题中,准确测量土壤的湿度至关重要。然而,膨胀土中存在裂缝,会对测量结果产生影响,这是当前研究领域存在的一个问题。本研究通过使用主动加热光纤布拉格光栅(AH-FBG)传感技术来测量膨胀土的原位湿度,并通过一系列数值模拟,研究了土壤裂缝对监测结果的影响,并提出了一种修正函数来消除测量误差。

研究内容:本研究采用主动加热光纤光栅感应技术,通过数值模拟研究了土壤裂缝对测量结果的影响,并提出了一种修正函数来消除测量误差。研究结果表明,蔡氏模型能够准确描述热导率与湿度之间的关系,并被用作校准模型。在加热策略下,传感器的影响范围在径向上大约为4厘米。在该范围内的裂缝会阻碍热传输,导致湿度监测结果的低估。修正后的测量结果的均方根误差(RMSE)降低到0.030 m3·m−3,这证实了AH-FBG传感技术可以在考虑裂隙影响的前提下,可靠地测量膨胀土的湿度。

研究意义:本研究的创新点在于使用主动加热光纤光栅传感技术来监测膨胀土湿度,并通过数值模拟研究了土壤裂缝对测量结果的影响,在此基础上提出了一种修正函数来消除测量误差。这项技术的成功应用为解决膨胀土工程问题提供了可靠的监测手段,对于岩土工程领域具有重要的研究意义。 该成果发表在国际期刊《Measurement》上。

Study on actively heated fiber Bragg grating sensing technology for expansive soil moisture considering the influence of cracks

Li J.; Zhu H.-H.; Wu B.; Hu L.-L.; Liu X.-F.; Shi B.

Published:2023-08-15

Measurement 218 (2023) 113087

DOI: 10.1016/j.measurement.2023.113087

Abstract: Accurately moisture content measurement is crucial in addressing engineering problems of expansive soil with cracks. In this study, the actively heated fiber Bragg grating (AH-FBG) sensing technology was used to measure in-situ moisture contents of expansive soil. The impact of soil cracks on the measurements was investigated through a series of numerical simulations, and a modified function was proposed to eliminate measurement errors. The results show that the Cai model can accurately describe the relationship between the thermal conductivity and moisture content, and is thus utilized as the calibration model. Under the heating strategy, the influence range of the sensor is roughly 4 cm in the radial direction. Cracks within that range hinder heat transmission, leading to underestimation of moisture contents. The RMSE of the measurements after modification is reduced to 0.030 m3⋅m-3, which verifies that AH-FBG sensing technology can be extended to the reliable measurement of expansive soil moisture.

Keywords: Expansive soil, Crack, Geotechnical monitoring, Fiber Bragg grating (FBG), Moisture content, Thermal conductivity

References

[1] C.S. Tang, B. Shi, C. Liu, L.Z. Zhao, B.J. Wang, Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils, Eng. Geol. 101 (3–4) (2008) 204–217, https://doi.org/10.1016/j.enggeo.2008.05.005.
[2] C.W.W. Ng, L.T. Zhan, C.G. Bao, D.G. Fredlund, B.W. Gong, Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration, Geotechnique 53 (2) (2003) 143–157, https://doi.org/10.1680/geot.2003.53.2.143.
[3] H.J. Lu, J.X. Li, W.W. Wang, C.H. Wang, Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles, Environ. Earth Sci. 74 (11) (2015) 7441–7450, https://doi.org/10.1007/s12665-015-4729-4.
[4] B. Liu, C. Zhu, C.S. Tang, Y.H. Xie, L.Y. Yin, Q. Cheng, B. Shi, Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP), Eng. Geol. 264 (2020), 105389, https://doi.org/10.1016/j.enggeo.2019.105389.
[5] J.M. Zhang, Y. Luo, Z. Zhou, C. Victor, M. Duan, Research on the rainfall-induced regional slope failures along the Yangtze River of Anhui, China, Landslides 18 (5) (2021) 1801–1821, https://doi.org/10.1007/s10346-021-01623-7.
[6] P.H. Msorris, J. Graham, D.J. Williams, Cracking in drying soils, Can. Geotech. J. 29 (2) (1992) 263–277, https://doi.org/10.1139/t92-030.
[7] C.J. Miller, H. Mi, N. Yesiller, Experimental analysis of desiccation crack propagation in clay liners, J. Am. Water Resour. Assoc. 34 (3) (1998) 677–686, https://doi.org/10.1111/j.1752-1688.1998.tb00964.x.
[8] J. Stolte, C.J. Ritsema, A.P.J. de Roo, Effects of crust and cracks on simulated catchment discharge and soil loss, J. Hydrol. 195 (1/2/3/4) (1997) 279–290, https://doi.org/10.1016/s0022-1694(96)03249-0.
[9] V. Kamchoom, A.K. Leung, Hydro-mechanical reinforcements of live poles to slope stability, Soils Found. 58 (6) (2018) 1423–1434, https://doi.org/10.1016/j.sandf.2018.08.003.
[10] M. Hardie, Review of novel and emerging proximal soil moisture sensors for use in agriculture, Sensors 20 (23) (2020) 6934, https://doi.org/10.3390/s20236934.
[11] W.B. Chen, W.Q. Feng, J.H. Yin, Effects of water content on resilient modulus of a granular material with high fines content, Constr. Build. Mater. 236 (2020), 117542, https://doi.org/10.1016/j.conbuildmat.2019.117542.
[12] S.L. Su, D.N. Singh, M.S. Baghini, A critical review of soil moisture measurement, Measurement 54 (2014) 92–105, https://doi.org/10.1016/j.measurement.2014.04.007.
[13] H.R. Parate, M.M. Kumar, M. Descloitres, L. Barbiero, L. Ruiz, J.J. Braun, M. Sekhar, C. Kumar, Comparison of electoral resistivity by geophysical method and neutron probe logging for soil moisture monitoring in a forested watershed, Curr. Sci. 100 (9) (2011) 1405–1412, http://www.jstor.org/stable/24076607.
[14] P. Schudel, The accuracy of measurements of soil-water content made with a neutron-moisture meter calibrated gravimetrically in the field, J. Hydrol. 62 (4) (1983) 355–361, https://doi.org/10.1016/0022-1694(83)90112-9.
[15] J.S. Selker, L. Th´evenkz, H. Huwald, A. Mallet, W. Luxemburg, N. Van De Giesen, M. Stejskal, J. Zeman, M. Westhoff, M.B. Parlange, Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res. 42 (2006) W12202, https://doi.org/10.1029/2006WR005326.
[16] J. García Díaz, N. Navarro Cano, E. Rúa ´Alvarez, Determination of the real cracking moment of two reinforced concrete beams through the use of embedded fiber optic sensors, Sensors 20 (3) (2020) 937.
[17] A. Leal-Junior, J. Casas, C. Marques, M.J. Pontes, A. Frizera, Application of additive layer manufacturing technique on the development of high sensitive fiber Bragg grating temperature sensors, Sensors 18 (12) (2018) 4120, https://doi.org/10.3390/s18124120.
[18] C.A. Díaz, C. Leit˜ao, C.A. Marques, M.F. Domingues, N. Alberto, M.J. Pontes, A. Frizera, M.R. Ribeiro, P.S. Andr´e, P.F. Antunes, Low-cost interrogation technique for dynamic measurements with FBG-based devices, Sensors 17 (10) (2017) 2414, https://doi.org/10.3390/s17102414.
[19] D.F. Cao, H.Y. Fang, F.M. Wang, H.H. Zhu, M.Y. Sun, A fiber Bragg grating based miniature sensor for the fast detection of soil moisture profiles in highway slopes and subgrades, Sensors 18 (2018) 4431, https://doi.org/10.3390/s18124431.
[20] M.Y. Sun, B. Shi, C.C. Zhang, X. Zheng, J.Y. Guo, Y.Q. Weng, M.N. He, J. Liu, Quasi-distributed fiber-optic in-situ monitoring technology for large-scale measurement of soil water content and its application, Eng. Geol. 294 (2021),
106373, https://doi.org/10.1016/j.enggeo.2021.106373.
[21] M.Y. Sun, B. Shi, J.Y. Guo, H.H. Zhu, H.T. Jiang, J. Liu, G.Qing. Wei, X. Zheng, Development and application of fiber-optic sensing technology for monitoring soil moisture field, Front. Sensors 2 (2022), https://doi.org/10.3389/fsens.2021.796789.
[22] X. Ye, H.H. Zhu, J. Wang, Q. Zhang, B. Shi, L. Schenato, A. Pasuto, Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system, e2022GL098211, Geophys. Res. Lett. 49 (2022), https://doi.org/10.1029/2022gl098211.
[23] D.F. Cao, S.K. Shukla, L.Q. Yang, C.C. Guo, J.H. Wu, F.M. Wang, Responses of calcareous sand foundations to variations of groundwater table and applied loads, J. Rock Mech. Geotech. Eng. 14 (4) (2022) 1266–1279, https://doi.org/10.1016/j.jrmge.2021.08.003.
[24] X.F. Liu, H.H. Zhu, B. Wu, J. Li, T.X. Liu, B. Shi, Artificial intelligence-based fiber optic sensing for soil moisture measurement with different cover conditions, Measurement 206 (2023), 112312, https://doi.org/10.1016/j.measurement.2022.112312.
[25] M.Y. Sun, B. Shi, D. Zhang, J. Liu, J.Y. Guo, G.Q. Wei, W. Cheng, Study on calibration model of soil water content based on actively heated fiber-optic FBG method in the in-situ test, Measurement 165 (2020), 108176, https://doi.org/10.1016/j.measurement.2020.108176.
[26] D.F. Cao, H.H. Zhu, B. Wu, J.C. Wang, S.K. Shukla, Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors, Eng. Geol. 290 (2021), 106197, https://doi.org/10.1016/j.enggeo.2021.106197.
[27] B. Wu, H.H. Zhu, D.F. Cao, L. Xu, B. Shi, Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors, Cold Reg. Sci. Technol. 189 (2021), 103332, https://doi.org/10.1016/j.coldregions.2021.103332.
[28] J. Liu, B. Shi, M.-Y. Sun, J.C. Yao, K. Fang, A dual-probe heat pulse approach using heated fiber-optic temperature sensing, Earth Environ. Sci. 861 (2) (2021) 022070, https://orcid.org/0000-0002-5703-7176.
[29] H.H. Zhu, B. Shi, C.C. Zhang, FBG-based monitoring of geohazards: current status and trends, Sensors 17 (3) (2017) 452, https://doi.org/10.3390/s17030452.
[30] H.B. Song, H.F. Pei, H.H. Zhu, Monitoring of tunnel excavation based on the fiber Bragg grating sensing technology, Measurement 169 (2020), 108334, https://doi.org/10.1016/j.measurement.2020.108334.
[31] F. Ciocca, I. Lunati, N. Van de Giesen, M.B. Parlange, Heated optical fiber for distributed soil-moisture measurements: a lysimeter experiment, Vadose Zone J. 11 (4) (2012) 2344–2353, https://doi.org/10.2136/vzj2011.0199.
[32] H.L. He, M.F. Dyck, R. Horton, T.S. Ren, K.L. Bristow, J.L. Lv, B.C. Si, Development and application of the heat pulse method for soil physical measurements, Rev. Geophys. 56 (4) (2018) 567–620, https://doi.org/10.1029/2017RG000584.
[33] K.L. Bristow, G.J. Kluitenberg, R. Hortor, Measurement of soil thermal properties with a dual-probe heat-pulse technique, Soil Sci. Soc. Am. J. 78 (5) (2014) 1575–1583, https://doi.org/10.2136/sssaj1994.03615995005800050002x.
[34] H.L. He, G.N. Flerchinger, Y. Kojima, M. Dyck, J.L. Lv, A review and evaluation of 39 thermal conductivity models for frozen soils, Geoderma 382 (2021), 114694, https://doi.org/10.1016/j.geoderma.2020.114694.
[35] O. Johansen, Thermal conductivity of soils, Cold Regions Research and Engineering Lab Hanover NH, 1977.