基于DFOS的地面变形监测技术研究进展与展望

doi: 10.13544/j.cnki.jeg.2018067
李豪杰1, 朱鸿鹄1,2, 施斌1, 陈晓平3
1.南京大学地球科学与工程学院 南京 210023
2.南京大学苏州高新技术研究院 苏州 215123
3.暨南大学力学与建筑工程学院 广州 510632

摘要: 近30年来,随着基础设施建设和工业化、城镇化进程的加快,我国各地出现了一系列与地面变形相关的灾害,造成了很大的经济损失和人员伤亡。地面变形的监测对预防地面塌陷、地面沉降和地基失稳等灾害有着极其重要的地位,亟需一种灵敏度高、动态范围大、性能稳定同时兼顾经济性的监测系统,以弥补常规技术在实时性、覆盖面与精度等方面的不足。本文详细介绍了分布式光纤传感(DFOS)的基本原理和其在地面变形监测工作中的独特优势,列举了几种常见的DFOS技术,并综述了这些技术的研究进展及其在地面变形机理研究及工程实践中的应用,对不同的监测方案和铺设工艺进行了对比分析。最后总结了基于DFOS的地面变形监测技术当前存在的瓶颈,指出了今后该课题研究的发展趋势。

关键词: 地面沉降 / 地裂缝 / 传感光纤 / 分布式感测 / 现场监测

Abstract: In the past three decades, along with the acceleration of infrastructure construction and urbanization, a series of disasters related to ground deformation have emerged in various parts of China, resulting in a series of economic losses and casualties. Ground deformation monitoring plays an important role in preventing ground subsidence, ground subsidence and foundation instability. The conventional monitoring technologies is more and more difficult to meet the requirements of engineering practices in terms of real-time performance, coverage and accuracy. Therefore, a reliable monitoring system with high sensitivity, large dynamic range, stable performance and economic consideration is urgently needed. This paper introduces the working principle of distributed fiber optic sensing (DFOS) technologies and their unique advantages in ground deformation monitoring. This paper lists several common distributed optical fiber sensing technology, and summarized the research progress of the technology and its application in ground deformation mechanism study and engineering practice, the different monitoring scheme and the laying process comparative analysis. At last, the current bottleneck of ground deformation monitoring technology based on DFOS is summarized, and the development trend of this research is pointed out in the future.

Key words: Land subsidence / Ground fissure / Sensing optical fiber / Distributed sensing / Field monitoring

参考文献

Bao X, Demerchant M, Brown A, et al. 2002. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor[J]. Journal of Lightwave Technology, 19(11): 1698-1704.

Brown A W, Demerchant M, Bao X, et al. 1999. Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method[J]. Journal of Lightwave Technology, 17(7): 1179-1183.

Ding Y, Shi B, Wu Z S. 2003. Optical fiber sensor in geotechnical engineering monitoring[C]//National Academic Conference on Geotechnical and Engineering: 283-291.

Gao Y, Ma Y H, Li K M. 2013. Application of optical fiber sensing technology to safety monitoring of geotechnical engineering[J]. Water Resources and Hydropower Engineering, 44(2): 117-121.

Glisic B, Yao Y. 2012. Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement[J]. Structural Health Monitoring, 11(11): 696-711.

Guo D K, Guo F Y, Ma Y H, et al. 2003. Investigation of ground cracks in Puyang county and the cause analysis[J]. Journal of Disaster Prevention and Mitigation Engineering, 23(3): 71-75.

Hao W J, Yang Z J, Zhang Q, et al. 2014. Application of optical fiber sensing techniques to karst collapse[J]. Hydrogeology and Engineering Geology, 41(1): 134-137.

Holzer T L, Johnson A I. 1985. Land subsidence caused by ground water withdrawal in urban areas[J]. Geojournal, 11(3): 245-255.

Huang M S, Chen W M, Huang S L. 1995. Light scattering in optical-fiber and its application in distribution optical-fiber sensor[J]. Journal of Transducer Technology, (2): 49-51.

Hung W C, Hwang C, Liou J C, et al. 2012. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan[J]. Engineering Geology, 148: 78-90.

Jiang J J, Pan M. 2007. Status of land subsidence and strategy for disaster prevention and mitigation in China[J]. Journal of Catastrophology, 22(1): 117-120.

Jiang S C, Wang J, Sui Q M, et al. 2015. Study of three-component FBG vibration sensor for simultaneous measurement of vibration, temperature, and verticality[J]. Journal of Sensors, (29): 1-9.

Jiang X Z, Lei M T, Chen Y, et al. 2006. An experiment study of monitoring sinkhole collapse by using BOTDR optical fiber sensing technique[J]. Hydrogeology and Engineering Geology, 33(6): 75-79.

Klar A, Dromy I, Linker R. 2014. Monitoring tunneling induced ground displacements using distributed fiber-optic sensing[J]. Tunnelling and Underground Space Technology, 40(2): 141-150.

Kontogianni V, Pytharouli S, Stiros S. 2007. Ground subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece[J]. Environmental Geology, 52(6): 1085-1095.

Li F, Zhu H H, Zhang C C, et al. 2017. Experimental study on feasibility of fiber Bragg grating-based foundation deformation monitoring[J]. Journal of Zhejiang University (Engineering Science), 51(1): 204-211.

Li H N, Li D S, Song G B. 2008. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Steel Construction, 26(11): 1647-1657.

Mendez M, Morse T F. 1989. Application of embedded optical fiber sensors in reinforced concrete building and structures[R]. Proc. SPIE 1170: 60-69.

Naruse H, Uehara H, Deguchi T, et al. 2007. Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine[J]. Measurement Science & Technology, 18(10): 3202.

Ortega-Guerrero A, Rudolph D L, Cherry J A. 1999. Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling[J]. Water Resources Research, 35(11): 3327-3341.

Pacheco-Martínez J, Hernandez-Marín M, Burbey T J, et al. 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México[J]. Engineering Geology, 164(18): 172-186.

Pei H F, Yin J H, Zhu H H, et al. 2012. Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers[J]. Measurement Science & Technology, 23(2): 025007.

Phien-Wej N, Giao P H, Nutalaya P. 2006. Land subsidence in Bangkok, Thailand[J]. Engineering Geology, 82(4): 187-201.

Ren W Z, Bai S W, Sun G F, et al. 2015. Research on deformation and subsidence characters of ground and surrounding rock induced by underground mining under thick covering terrain by model test[J]. Chinese Journal of Rock Mechanics and Engineering, 37(5): 952-957.

Shi B. 2017. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 25(3): 582-591.

Sun Y J, Tong H J, Shi B, et al. 2012. Status analysis for the application of DFOS technology in the monitoring of slope stability[J]. Journal of Engineering Geology, 20(S): 798-804.

Sun Y J, Zhang D, Shi B, et al. 2014. Distributed acquisition, characterization and process analysis of multi-field information in slopes[J]. Engineering Geology, 182: 49-62.

Suo W B, Lu Y, Shi B, et al. 2016. Development and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring[J]. Journal of Civil Structural Health Monitoring, 6(4): 1-10.

Uchiyama H, Sakairi Y, Nozaki T. 2002. An optical fiber strain distribution measurement instrument using the new detection method[J]. ANDO Technical Bulletin, 10: 52-60.

Wang B J, Ke L, Shi B, et al. 2009. Test on application of distributed fiber optic sensing technique into soil slope monitoring[J]. Landslides, 6(1): 61-68.

Wang G Y, Shi B, Wang X M, et al. 2009. Land subsidence and earth fissures in southern Jiangyin[J]. Hydrogeology and Engineering Geology, 36(2): 117-122.

Wang H X, Zhang D, Li C S, et al. 2014. PPP-BOTDA based experiments on characterization and description methods for cracking of expansive soil[J]. Journal of Engineering Geology, 22(2): 210-217.

Wang L S. 2002. The disaster prevention countermeasures of land subsidence and ground fissure[C]//China Association for Science and Technology to Reduce Natural Disasters Discussion Papers Compiled, 2: 13-16.

Wang X F, Wu J H, Wang Y L, et al. 2016. Test on soiled formation caused by water pumping and artificial recharge[J]. Journal of Engineering Geology, 24 (S1): 1161-1167.

Wei K. 2016. Application of distributed optical fiber monitoring in ground subsidence monitoring in Fuyang[J]. Geology of Anhui, 26(2): 135-137.

Wu J, Jiang H, Su J, et al. 2015. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 5(5): 587-597.

Wu Z Y, Yu Q, Zhang Y, et al. 2003. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology and Engineering Geology, 30(1): 67-72.

Xu Y S, Yu S G, Shen W L. 2006. The present situation and future of ground subsidence prediction method caused by groundwater exploitation[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(3): 352-357.

Yan T B. 2009. Optical fiber sensing technology and its application[M]. Beijing: Tsinghua University Press.

Yin Y P, Zhang Z C, Zhang K J. 2005. Land subsidence and countermeasures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control, 16(2): 1-8.

Yu J, Wang X M, Wu J Q,et al. 2006. Characteristics of land subsidence and its remedial proposal in Suzhou-Wuxi-Changzhou Area[J]. Geological Journal of China Universities, 12(2): 179-184.

Yue J P, Fang L. 2007. Research advances of theory and technology in deformation monitoring[J]. Bulletin of Surveying and Mapping, (7): 4-7.

Zhang C C, Shi B, Liu S P, et al. 2018. A study of the mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 40(6). (in press).

Zhang C C, Zhu H H, Liu S P, et al. 2018. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 234: 83-96.

Zhang D, Zhang P S, Shi B, et al. 2015. Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing[J]. Chinese Journal of Geotechnical Engineering, 37(5): 952-957.

Zhu H H, Shi B, Yan J F, et al. 2015. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network[J]. Engineering Geology, 186: 34-43.

Zhu H H, Shi B, Zhang J, et al. 2014. Distributed fiber optic monitoring and stability analysis of a model slope under surcharge loading[J]. Journal of Mountain Science, 11(4): 979-989.

Zhu H H, Shi B. 2015. Current progress and trends of optoelectronic sensor based monitoring in geo-engineering a summary of 5th OSMG-2014[J]. Journal of Engineering Geology, 23(2): 352-360.

Zhu H H, Yin J H, Jin W, et al. 2010. Health monitoring of foundations using fiber Bragg grating sensing technology[J]. China Civil Engineering Journal, 43(6): 109-115.

Zhu L, Su X S, Duan F Z, et al. 2007. Virtual simulation of ground subsidence in Suzhou-Wuxi-Changzhou region[J]. Journal of Natural Disasters, 16(1): 136-140.

Zhu X X, Yu J, Wu J Q. 2006. Prediction of ground fissures in Suzhou-Wuxi-Changzhou area based on ANN analysis[J]. The Chinese Journal of Geological Hazard and Control, 17(2): 28-32.

丁勇, 施斌, 吴智深. 2003. 岩土工程监测中的光纤传感器[C]//第四届全国岩土工程大会会议论文集. 北京: 283-291.

高垠, 马玉华, 李克绵. 2013. 光纤传感技术在岩土工程安全监测中的应用[J]. 水利水电技术, 44(2): 117-121.

郭德科, 郭凤英, 马艳华, 等. 2003. 濮阳县地裂缝成因分析[J]. 防灾减灾工程学报, 23(3): 71-75.

郝文杰, 杨卓静, 张青, 等. 2014. 光纤传感技术在岩溶塌陷监测中的应用研究[J]. 水文地质工程地质, 41(1): 134-137.

黄民双, 陈伟民, 黄尚廉. 1995. 光纤中光散射及在分布式传感技术中的应用[J]. 传感器与微系统, (2): 49-51.

蒋小珍, 雷明堂, 陈渊, 等. 2006. 岩溶塌陷的光纤传感监测试验研究[J]. 水文地质工程地质, 33(6): 75-79.

金江军, 潘懋. 2007. 我国地面沉降灾害现状与防灾减灾对策[J]. 灾害学, 22(1): 117-120.

李飞, 朱鸿鹄, 张诚成, 等. 2017. 地基变形光纤光栅监测可行性的试验研究[J]. 浙江大学学报(工学版), 51(1): 204-211.

廖延彪. 2009. 光纤传感技术与应用[M]. 北京: 清华大学出版社.

任伟中, 白世伟, 孙桂凤, 等. 2005. 厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特性模型试验研究[J]. 岩石力学与工程学报, 24(21): 3935-3941.

施斌. 2017. 论大地感知系统与大地感知工程[J]. 工程地质学报, 25(3): 582-591.

孙义杰, 童恒金, 施斌, 等. 2012. DFOS 技术在边坡稳定性监测中的应用现状分析[J]. 工程地质学报, 20(S): 798-804.

王光亚, 施斌, 王晓梅, 等. 2009. 江阴南部地面沉降及地裂缝研究[J]. 水文地质工程地质, 36(2): 117-122.

王宏宪, 张丹, 李长圣, 等. 2014. 基于PPP-BOTDA的膨胀土裂隙发育特征的分析与表征方法研究[J]. 工程地质学报, 22(2): 210-217.

王兰生. 2002. 地面沉降与地裂缝及其防灾对策[C]//中国科协2002年减轻自然灾害研讨会论文汇编之二, 2: 13-16.

王雪帆, 吴静红, 汪义龙, 等. 2016. 降水及回灌过程中土体变形响应室内模型试验研究[J]. 工程地质学报, 24(S1): 1161-1167.

魏坤. 2016. 分布式光纤监测在阜阳地面沉降监测中的应用[J]. 安徽地质, 26(2): 135-137.

伍洲云, 余勤, 张云. 2003. 苏锡常地区地裂缝形成过程[J]. 水文地质工程地质, 30(1): 67-72.

许烨霜, 余恕国, 沈水龙. 2006. 地下水开采引起地面沉降预测方法的现状与未来[J]. 防灾减灾工程学报, 26(3): 352-357.

殷跃平, 张作辰, 张开军. 2005. 我国地面沉降现状及防治对策研究[J]. 中国地质灾害与防治学报, 16(2): 1-8.

于军, 王晓梅, 武健强, 等. 2006. 苏锡常地区地面沉降特征及其防治建议[J]. 高校地质学报, 12(2): 179-184.

岳建平, 方露, 黎昵. 2007. 变形监测理论与技术研究进展[J]. 测绘通报, 7: 4-7.

张诚成, 施斌, 刘苏平, 等. 2018. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 40(11): 1959-1967.

张丹, 张平松, 施斌, 等. 2015. 采场覆岩变形与破坏的分布式光纤监测与分析[J]. 岩土工程学报, 37(5): 952-957.

朱鸿鹄, 施斌. 2015. 地质和岩土工程光电传感监测研究进展及趋势——第五届OSMG国际论坛综述[J]. 工程地质学报, 23(2): 352-360.

朱鸿鹄, 殷建华, 靳伟, 等. 2010. 基于光纤光栅传感技术的地基基础健康监测研究[J]. 土木工程学报, 43(6):109-115.

朱琳, 苏小四, 段福州, 等. 2007. 苏锡常地区地面沉降的虚拟表现[J]. 自然灾害学报, 16(1): 136-140.

朱兴贤, 于军, 武健强. 2006. 基于ANN的苏锡常地裂缝预测研究[J]. 中国地质灾害与防治学报, 17(2): 28-32.